Bioelectricidade

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Câmara para a execução da pena capital por injeção letal. Drogas anestésicas e o cloreto de potássio (adequadamente diluído), a droga mortal, afetam diretamente os mecanismos bioelétricos do sistema nervoso central, levando primeiro à perda de consciência; e fatalmente à hipersensibilidade do sistema de controle pulmonar e do coração, que superexcitado, entra em fibrilação.

A Bioeletricidade, o Biomagnetismo, ou de forma geral o Bioeletromagnetismo são hoje nomenclaturas utilizadas para referir-se aos fenômenos elétricos, magnéticos ou eletromagnéticos quando ocorrem no âmbito dos organismos vivos. Frente ao conhecimento moderno, "bioeletromagnetismo" em nada acrescenta conceitualmente ao eletromagnetismo estudado primariamente em Física, a não ser o fato de que enfoca-se a manifestação de tais fenômenos em sistemas biológicos. O bioeletromagnetismo rege-se por tal exatamente pelas mesmas regras do eletromagnetismo.

O termo bioeletricidade atrela-se usualmente aos potenciais eléctricos e correntes eléctricas que são produzidos ou que ocorrem em organismos vivos. Os potenciais são gerados por uma diversidade de processos biológicos .[1]

A existência de diferença de potencial elétrico através das membranas de todas as células do corpo é verificada cientificamente, e algumas células como as do sistema nervoso (neurais) se especializaram de forma a constituírem sistemas cuja função central é a de disparar, propagar e processar impulsos elétricos. Os sistemas nervosos dos animais, estruturados principalmenente por neurônios, constituem per facto intrincados circuitos elétricos.

Nos mecanismos fisico-químicos que levam às diferenças de potencial elétrico através das membrana os íons mais importantes e quase sempre envolvidos são: Na+, K+ e Cl-; e entre os processos indispensáveis ao metabolismo celular podem-se destacar a bomba de sódio potássio; que regula a concentração intracelular dos correlatos íons; e o potencial de ação, responsável por disparar o mecanismo de propagação de impulsos elétricos no interior das células (com destaque para as nervosas).

Contexto histórico[editar | editar código-fonte]

No século XVIII, o médico e físico italiano Luigi Galvani registrou o fenômeno no qual as pernas de uma contraíam-se quando solicitadas por fontes de eletricidade estática. Galvani não reconheceu a identidade entre a eletricidade estática e o que à época denominou "eletricidade animal" como causa para o fenômeno, pois per facto a definição atual de eletricidade estática não era à época estabelecida, sendo tal identidade apenas posteriormente identificada [2] .

Luigi e muitos de seus contemporâneos consideravam que a ativação dos músculo da rã - e dos demais seres vivos - era resultando de uma substância fluída que percorria os nervos, a "eletricidade animal"[2] ; hipótese que pode-se em princípio entender como uma literal definição de "bioeletricidade". Não tardou para que a "eletricidade animal", para Galvani produzida pela própria musculatura da rã mesmo depois de morta [2] , fosse proposta como o fluido vital responsável por animar a matéria bruta (vitalismo).

Para o físico também italiano Alessandro Volta, contemporâneo a Galvani, a eletricidade que fazia a perna da rã mover-se era contudo "metálica", uma espécie de "eletricidade química" de origem externa ao tecido biológico, hipótese que veio a se confirmar mais tarde com o advento da pilha elétrica [2] .

O advento da pilha elétrica, impulsionado pela acalorada contenda entre Volta e Galvani acerca da natureza da "bioeletricidade"[2] , representa um marco na história do eletromagnetismo frequentemente celebrado mesmo hoje em dia: pela primeira vez dispunha-se de uma fonte constante de eletricidade capaz de permitir o seu estudo detalhado.

É na época que desenrola-se a contenda entre Volta e Galvani que escreve-se a clássica obra de Mary Shelley, "Frankenstein".

No paradigma científico atual, o conceito de bioeletricidade confunde-se com exatidão ao conceito de eletricidade descrito em qualquer livro de física; expressando em acréscimo, quando muito, apenas o fato de os fenômenos elétricos em consideração darem-se atrelados à processos que se classificam como biológicos. As ideias de uma "eletricidade animal" distinta e de um "fluido vital" vão-se há tempos na história da ciência [2] .

Bioeletricidade[editar | editar código-fonte]

A eletricidade é um processo natural inerente a todo e qualquer sistema material, sendo a interação elétrica a interação central para se estabelecer a estrutura da matéria conforme hoje concebida. Todas as reações químicas, incluso as bioquímicas, são explicadas mediante a interação eletrônica dos átomos, moléculas ou íons.

Nos organismos vivos todas as células operam sob tal princípio; contudo células especiais no cérebro e em todo o corpo são melhor compreendidas apenas mediante explicitação direta de seu comportamento elétrico. As percepções de estímulos ambientais ligam-se diretamente a mecanismos biológicos de conversão de sinais estimulantes em impulsos elétricos reconhecíveis pelos sistemas do organismo. Cada padrão da luz, som, calor, dor, cada contração muscular dos dedos, cada pensamento, traduz-se em uma seqüência de pulsos elétricos codificado, armazenado e interpretado no sistema nervoso central dos organismo superiores.

Os processos elétricos que promovem esta comunicação entre as células ocorrem em uma solução, com as substâncias e elementos necessários dissolvidos na água. Quando uma substância como o sal (NaCl) se dissolve em água, ela deixa de existir como uma entidade neutra e se dissocia em íons (no caso do sal, ele se dissocia no cátion sódio, Na+, e no ânion cloreto, Cl-). Os átomos ou mesmo moléculas podem igualmente perder ou ganhar elétrons, tornando-se também íons .

Os íons possuem cargas positivas e negativas, e o movimento destes íons carregados dentro e fora da célula viva implicam movimento de cargas elétricas. Focando-se no neurônio mas podendo-se igualmente estender o raciocínio às demais células corporais, as organelas de uma célula neuronal encontram-se imersas no citoplasma, fluído aquoso encerrado pela membrana plasmática, no qual diluem-se várias substâncias, com destaque para moléculas protéicas e os íons de sais inorgânicos. Externamente, a célula é banhada também pelas substâncias diversas, entre elas as que alimentam a célula, criando condições para que essa possa realizar e manter seu metabolismo.

A habilidade das células nervosas em processar a informação elétrica depende das propriedades especiais da membrana celular, que controla o fluxo de substâncias entre o interior e o exterior da célula. Canais sobre a membrana permitem que certas substâncias e íons passem do meio interno para o meio externo da célula e vice-versa; alguns espontaneamente, outros sob imposição do mecanismo bioquímico atrelado ao canal. Os movimentos iônicos através dos canais são também influenciados pelo processo de osmose, promovendo a difusão das susbstâncias no meio aquoso. A membrana mostra-se assim, de forma ativa ou passiva, ou permeável, ou semipermeável ou impermeável a cada uma das substâncias em consideração.

O estudo destes mecanismos bioelétricos define a eletrofisiologia.

Impulso nervoso[editar | editar código-fonte]

O cloreto de potássio adequadamente diluído, quando injetado no sistema sanguíneo, afeta diretamente as concentrações de íons tanto externa quanto internamente às células. O resultado é uma diminuição substancial do limiar de excitação necessário para se disparar um impulso nervoso (potencial de ação). Qualquer ruído elétrico externo torna-se capaz de dispará-lo, e o sistema nervoso afetado colapsa dada a sua hipersensibilidade.

Em um estado não excitado o neurônio (e demais células) mantém a concentração de íons sódio em seu interior mais baixa do que a concentração no meio externo, e a concentração de íons potássio interna maior do que a concentração em seu exterior; de tal forma que, quando não excitado, há uma diferença de potencial elétrico entre o interior e o exterior do neurônio, sendo o interior negativo em relação ao exterior em cerca de 70 milivolts. Ao receber um estímulo através de um neurotransmissor adequado nas regiões sinápticas, canais específicos na membrana neuronal subitamente se abrem; íons sódio adentram rapidamente a célula na região em questão e íons sódio a abandonam. As variações de concentração dos íons leva à uma inversão de polaridade entre o meio externo e a região interna nas proximidades do estímulo em valor que usualmente supera os +30 milivolts. Essa diferença de tensão mais alta do que 30mV - o potencial de ação - induz canais próprios subjacentes a também se abrirem, o que leva a uma onda de inversão de polaridade ao longo de toda a membrana celular (ao longo do axônio no caso do neurônio). O restabelecimento também rápido do potencial de repouso via mecanismo ativo da membrana (bomba de sódio potássio) faz com que, no global, um pulso elétrico de cerca de 30mV seja visto se propagando ao longo da extensão da membrana (e do axônio no caso do neurônio) em meio a regiões posterior e anterior caracterizadas por uma diferença de potencial de -70mv. [3]

Biomagnetismo[editar | editar código-fonte]

Os tubarões são muitas vezes descritos como possuidores de estruturas que lhes permitem perceber campos elétricos imperceptíveis para a maioria de seres humanos, e outros animais, tal como aenguia elétrica, são capazes de gerar grandes campos elétricos ao redor de seus corpos. Há também animais que têm sensores biológicos altamente sensíveis ao magnetismo. O pombo-correio bem como algumas espécies de pássaros migratórios utilizam um "sistema de navegação' baseado no campo magnético da Terra para estabelecerem orientação espacial em seus voos.

O metabolismo celular também dá origem a campos magnéticos. Embora em intensidade muito menos evidente do que os campos elétricos usualmente envolvidos no processo - e por tal tecnologicamente muito menos explorado - o termo biomagnetismo é usualmente utilizado para designar campos magnéticos que têm origem nos processos físicos que tomam lugar em sistemas biológicos. Em senso comum, biomagnetismo é usualmente confundido com bioeletricidade, sendo sem rigor - e de forma incorreta - por vezes usado como sinônimo de bioeletricidade.

Bioeletromagnetismo e Tecnologia[editar | editar código-fonte]

O Bioeletromagnetismo é resultante da corrente elétrica variável produzidas entre outros pelos potenciais de ação ao longo das membranas celulares, e designa os campos eletromagnéticos por elas então gerados através do fenômeno de indução eletromagnética descritos via leis de Faraday e Ampère (ver equações de Maxwell). Em estrito designa a emissão de ondas eletromagnéticas pelos organismos vivos em virtude dos processos inerentes ao seu metabolismo.

Assim como a bioeletricidade, o bioeletromagnetismo é um aspecto comum a todos as sistemas vivos, incluindo plantas e animais, contudo destaca-se no âmbito dos sistemas nervosos dos animais por atrelar-se diretamente às estruturas cerebrais e aos processos inerentes a tais sistemas; e às pesquisas dos mesmos. É amplamente explorado em aparelhos que visam a explorar o funcionamento do córtex cerebral. Sensores eletromagnéticos atados à cabeça ou outras partes do corpo permitem a percepção dos sinais biologicamente gerados e o envio dos mesmos à computadores, que conseguem não apenas estabelecer as áreas biológicas sendo ou não ativadas por processos internos ou estímulos externos como também identificar, nos casos mais sofisticados, a natureza da informação sendo ali processada. Hoje, a partir de sensores eletromagnéticos conectados na parte posterior da cabeça (sobre o córtex visual) já se pode inclusive produzir, via sinais capitados, mesmo que em baixa definição, uma imagem eletrônica do que o paciente está a observar; algo equivalente a utilizar os olhos do observador em lugar de uma câmera eletrônica tradicionalmente conectada ao computador [3] .

A compreensão de que o sistema nervoso dos animais, incluso o humano, é em essência um circuito elétrico tem permitido significativos avanços não apenas no estudo e compreensão do funcionamento destes sistemas mas também na área da biotecnologia, que volta-se à interação corpo-máquina. Capacetes especialmente construídos conseguem hoje induzir estados de consciência incomuns, a exemplo a indução de "experiência fora do corpo". Olhos biônicos implantados em pessoas com deficiência ocular permitem hoje cegos voltarem a enxergar; membros amputados são substituídos por próteses que, conectadas aos nervos interrompidos, em pouco ficam a dever aos membros originais; computadores são comandados pelo pensamento, e até mesmo partes do cérebro humano (hipocampo) já podem ser substituídas por chips eletrônicos adequadamente projetados [3] .

Termos relacionados[editar | editar código-fonte]

Bioenergética designa o estudo das formas de energia e de suas inerconversões no âmbito relevante aos sistemas biológicos, aos organismos vivos. A Biodinâmica trabalha com os conceitos físicos envolvidos na motricidade inerente aos organismos.

Dentro do campo das ciências biomédicas, engenheiros biomédicos projetam e fazem uso de conceitos e teorias de circuitos eletrônicos contudo aplicando-os à biologia molecular, farmacologia, e fisiologia. Nesta área e no âmbito da biotencologia, dadas as propriedades de suas membranas e à forma como respondem a estímulos bioquímicos, há os que comparem a célula a um transístor. O Bioeletromagnetismo é também associado com os "circuitos" biológicos que determinam os biorrítmos e à cronobiologia. O Biofeedback é usado em fisiologia, e a psicologia o utiliza para explicar ciclos rítmicos das características emotivas, mentais, físicas e também em uma técnica para ensinar o controle sobre estas funções bioelétricas.

Na biotecnologia busca-se levar ao extremo a interação homem máquina, o que tem permitido a construção de organismos biônicos, ciborgues, e no âmbito da cibernética busca-se construir um autômato inteiramente eletromecânico, e em princípio último, à imagem e semelhança do seu genitor biológico, também pensante.

Ver também[editar | editar código-fonte]


Referências

  1. "bioelectricity". Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2013. Web. 27 Dez. 2013 <http://www.britannica.com/EBchecked/topic/65834/bioelectricity>.
  2. a b c d e f Mosley, Michael; Lynch, John - Uma História da Ciência; Experiência, Poder e Paixão - BBC - Jorge Zahar Editor Ltda - Rio de Janeiro - RJ - 2011 - ISBN 978-85-378-0457-5
  3. a b c Cartner, Rita; et alii - O livro do Cérebro - Rio de Janeiro - Agir - 2012. ISBN: 978.85.220-1361-6