Ciclo de Carnot

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Diagrama Pressão x Volume para o ciclo de Carnot

Ciclo de Carnot é o ciclo executado pela máquina de Carnot, idealizada pelo engenheiro francês Carnot

Funcionando entre duas transformações isotérmicas e duas adiabáticas alternadamente, permite menor perda de energia (Calor) para o meio externo (fonte fria).


Rendimento[editar | editar código-fonte]

O rendimento da Máquina de Carnot é o máximo que uma máquina térmica trabalhando entre dadas temperaturas da fonte quente e da fonte fria pode ter (Mas o rendimento nunca chega a 100%).

Temos que o rendimento da máquina em porcentagem é igual a:

\left (1 - \frac{T_f}{T_q} \right ) \times 100%

Onde:

T_f = Temperatura da fonte fria(em Kelvin)
T_q = Temperatura da fonte quente (em Kelvin)

A utilidade da Máquina de Carnot é descobrir se uma máquina térmica tem bom rendimento, para assim ver se seu custo é viável para a indústria.

A possibilidade de interconversão entre calor e trabalho possui restrições para as máquinas térmicas. O Segundo Princípio da Termodinâmica, elaborado em 1824 por Sadi Carnot, é enunciado da seguinte forma:

" Para haver conversão contínua de calor em trabalho, um sistema deve realizar ciclos entre fontes quentes e frias, continuamente. Em cada ciclo, é retirada uma certa quantidade de calor da fonte quente (energia útil), que é parcialmente convertida em trabalho, sendo o restante rejeitado para a fonte fria (energia dissipada)"

Funcionamento da máquina de Carnot[editar | editar código-fonte]

Na Fig. 1 mostraremos a energia e a temperatura em Q e T respectivamente, que durante cada ciclo do motor, a substância de trabalho absorve a energia Q_a sob a forma de calor de um reservatório térmico mantido a temperatura constante T_a e libera a energia Q_b sob a forma de calor para um segundo reservatório térmico mantido a uma temperatura inferior, também constante T_b.

FIG. 1 Calor Q_a convertido em trabalho

Exemplo: Em uma locomotiva a vapor, a caldeira representa a fonte quente, de onde é retirada uma certa quantidade de calor. Parte dessa energia térmica, denominada energia útil, é convertida em trabalho mecânico. A outra parte dessa energia, chamada energia dissipada, é jogada para a atmosfera, que, nesse caso, possui o papel de fonte fria.

O rendimento de uma máquina térmica é dado pelo quociente do trabalho pela energia útil, onde o trabalho é definido pela diferença entre a energia útil e a energia dissipada. A equação do rendimento pode ser reescrita como a diferença entre a unidade e o quociente da energia dissipada pela energia útil.

Rendimento da Maquina (r)

r=\frac{W}{Q_1}

Rendimento da Maquina em % (r)

r=(1-\frac{Q_2}{Q_1}) \ X 100%

Trabalho (W)

W={Q_1}-{Q_2}

onde:

{r} é o rendimento;
{Q_1} é a energia útil;
{W} é o trabalho;
{Q_2} é a energia dissipada;

Processos do Ciclo e Trabalho Realizado[editar | editar código-fonte]

O Ciclo de Carnot demonstra que o maior rendimento possível para uma máquina térmica é o de uma máquina que realizasse um ciclo de duas transformações adiabáticas e duas transformações isotérmicas, alternadas entre si, de acordo com o esquema:


1) Processo isotérmico reversível, no qual o calor é transferido do, ou para o reservatório de alta temperatura;

2) Processo adiabático reversível, no qual a temperatura do fluido de trabalho de um reservatório a alta temperatura diminui até o outro;

3) Processo isotérmico reversível, cujo calor é transferido do, ou para o reservatório de menor temperatura;

4) Processo adiabático reversível, em que a temperatura do fluido de trabalho vai aumentando desde o reservatório (a baixa temperatura) até o outro

FIG. 2 Diagrama Pressão x Volume para o Ciclo de Carnot


A fig. 2 mostra um diagrama p-V (pressão e Volume) do ciclo de Carnot. Como indicado pelas setas, o ciclo é percorrido no sentido horário. Imaginemos que a substância de trabalho é um gás, confinado em um cilindro isolado com um pistão pesado móvel. O cilindro pode ser colocado à vontade sobre qualquer um dos dois reservatórios térmicos, como na fig. 3, ou seja, uma placa isolante. A Fig. 2 mostra que, se colocarmos o cilindro em contato com o reservatório em alta temperatura com temperatura Ta, o calor |Qa| se transfere para a substância de trabalho partindo deste reservatório quando o gás sofre uma expansão isotérmica do volume Va para o volume Vb. Analogamente, com a substância de trabalho em contato com o reservatório em baixa temperatura com temperatura Tb, o calor |Qb| se transfere da substância de trabalho para o reservatório em baixa temperatura quando o gás sofre uma compressão isotérmica do volume Vc para o volume Vd.

FIG. 3 Reservatorio 1
FIG. 3 Reservatório 2

Supomos que a transferência de calor para a substância de trabalho ou retirado de calor da substância de trabalho só podem acontecer durante os processos isotérmicos ab e cd da fig. 2. Confirmamos que os processos isotérmicos bc e da que se juntam às duas isotermas nas Ta e Tb, são processos adiabáticos, ou seja, reversíveis, são processos nos quais não se transfere nenhuma energia sob a forma de calor. Para garantir que isto ocorra, durante os processos bc e da o cilindro é colocado sobre uma placa isotérmica quando o volume da substância de trabalho está variando.

O trabalho representado na fig. 2 pela área sob a curva abc, mostra que a substância de trabalho está expandido, ou seja, realizado trabalho positivo quando ela eleva o pistão carregado. E o trabalho representado pela área sob a curva cda, mostra que a substância de trabalho está sendo comprimida, que significa estar realizado trabalho negativo sobre o ambiente ou, que é equivalente, o ambiente externo esta realizando trabalho sobre ela quando o pistão carregado desce.

Máquina de refrigeração[editar | editar código-fonte]

O Ciclo de Carnot em sentido anti-horário ilustra o funcionamento de uma máquina de refrigeração, em seu máximo rendimento.

Quociente de Energia[editar | editar código-fonte]

No Ciclo de Carnot o quociente da energia dissipada pela temperatura da fonte fria é igual ao quociente da energia útil pela temperatura da fonte quente. Ou seja, os calores trocados pelas fontes quente e fria são proporcionais às temperaturas das fontes quente e fria. Logo, se tem que o quociente da energia dissipada pela energia útil é igual ao quociente da temperatura da fonte fria pela fonte quente. Assim, o rendimento fica igual à diferença de uma unidade com o quociente da temperatura da fonte fria pela da fonte quente.

\frac{Q_2}{Q_1}=\frac{T_2}{T_1}

onde:

{T_1} é a temperatura da fonte quente;
{T_2} é a temperatura da fonte fria;
{Q_1} é a energia útil;
{Q_2} é a energia dissipada;

O propósito de qualquer motor é transformar o máximo possível de energia extraída em trabalho. O motor de Carnot (ou seja, o motor de uma máquina térmica que opera no Ciclo de Carnot) necessariamente possui eficiência térmica menor que a unidade – ou seja, essa eficiência térmica é menor que 100%. Isto mostra que apenas parte da energia extraída em forma de calor de um reservatório de alta temperatura está disponível para realizar trabalho. O resto é liberado para o reservatório de baixa temperatura.

A máquina operante no Ciclo de Carnot independe da substância com que trabalhe. Ou seja, o rendimento de uma máquina térmica é função exclusiva das temperaturas que formam os corpos quente e frio. Logo, duas máquinas térmicas diferentes que operem sob mesma temperatura (no Ciclo de Carnot) possuem rendimentos iguais.

FIG. 4 Calor Qa é convertido completamente em trabalho W

Observação: um rendimento igual a 100% (Fig. 4), como idealizavam os inventores, é fisicamente impossível: para o rendimento máximo, todo calor que vem da fonte quente deveria ser convertido em trabalho. Isto só ocorreria se a temperatura da fonte fria fosse zero absoluto.

Curiosidade[editar | editar código-fonte]

As plantas são os seres vivos que menos perdem energia sob a forma de calor: sua dispersão é de apenas 5% em média, enquanto o corpo humano perde cerca de 30%.

Referências[editar | editar código-fonte]


Ícone de esboço Este artigo sobre Termodinâmica é um esboço. Você pode ajudar a Wikipédia expandindo-o.