Grupo de simetria

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou se(c)ção não cita fontes fiáveis e independentes (desde Setembro de 2014). Por favor, adicione referências e insira-as no texto ou no rodapé, conforme o livro de estilo. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros, acadêmico)Yahoo!Bing.
Um tetraedro pode ser disposto em 12 distintas posições somente por rotação. Estão acima ilustradas no formato de gráfico de ciclo, conjuntamente com as rotações de 180° de face (setas azuis) e de 120° de vértice (setas vermelhas) que permutam o tetraedro através das posições. As 12 rotações formam o grupo simetria de rotação da figura.

O grupo de simetria de um objeto (imagem, sinal, etc., e.g. em 1D, 2D ou 3D) é o grupo de todas as isometrias sob as quais é invariante com composição como a operação. É um subgrupo do grupo de isometria do espaço em questão.


Translation Latin Alphabet.svg
Este artigo ou secção está a ser traduzido (desde março de 2008). Ajude e colabore com a tradução.

(em inglês)

Ligações externas[editar | editar código-fonte]