Implicação entre funções

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Text document with red question mark.svg
Este artigo ou secção contém uma ou mais fontes no fim do texto, mas nenhuma é citada no corpo do artigo, o que compromete a confiabilidade das informações. (desde maio de 2012)
Por favor, melhore este artigo introduzindo notas de rodapé citando as fontes, inserindo-as no corpo do texto quando necessário.
Merge-arrows 2.svg
Foi proposta a fusão deste artigo ou se(c)ção com Mapa de Karnaugh. Por favor crie o espaço de discussão sobre essa fusão e justifique o motivo aqui; não é necessário criar o espaço em ambas as páginas, crie-o somente uma vez. Perceba que para casos antigos é provável que já haja uma discussão acontecendo na página de discussão de um dos artigos. Verifique ambas (1, 2) e não se esqueça de levar toda a discussão quando levar o caso para a central. (desde Agosto de 2012)

Quando funções possuem as mesmas variáveis, conclui-se que a primeira função, que chamaremos de F1, implica a segunda, F2, quando para todas as entradas em que F1 seja 1, F2 também seja. Existem três tipos de implicação entre as funções.
A seguir, definiremos cada uma delas:

Implicante[editar | editar código-fonte]

Quando F1 for um produto podemos classificá-lo como um implicante da função F2. Portanto, um termo de uma função produto que possua mintermos com valor igual a 1 pode ser denominado implicante.

Resumindo, todos os mintermos ou agrupamento dos mesmos é um implicante.

Implicante primo[editar | editar código-fonte]

Quando um implicante não implica nenhum outro, ele será um implicante primo, ou apenas IP. Então podemos definir um implicante primo como um termo produto em que a eliminação de qualquer literal tem como resultado um termo produto que não é um implicante.

Resumindo, um IP é um conjunto validado de mintermos que não pode ter seu tamanho aumentado.

No mapa de Karnaugh, os IPs são os grupos maiores possíveis e, devido a isso, são os produtos com o menor número de variáveis. Por isso, podemos utilizar uma expressão minimal que emprega apenas implicantes primos.

Implicante primo essencial[editar | editar código-fonte]

Na expressão acima, podemos ver que os IPs utilizados possuem algo em comum: cada um deles o único implicante primo para certo mintermo, por isso eles são denominados implicantes primos essenciais, ou apenas IPE.Estes podem ser definidos como um implicante primo que tenha pelo menos um mintermo único, ou seja, que não esteja presente em nenhum outro IP. Então, um IPE é um IP que possua um mintermo que não pode ser relacionado de outra maneira.

Quando existem IPEs na função, eles devem estar na expressão minimal da função, todavia, não é sempre que existem implicantes primos essenciais ou que podemos ocupar todos os mintermos usando só IPEs.

Referências[editar | editar código-fonte]

[1] [2] [3]

  1. Sistemas Digitais (Mapas de Karnaugh) – Prof. Carlos Sêrro e Prof. João Paulo Carvalho, Outubro de 2005. Página visitada em 17 de maio de 2012.
  2. Sistemas Digitais (Minimização de Expressões e Mapa de Karnaugh) – Mário Serafim Nunes e Guilherme Silva Arroz, 2010/2011. Página visitada em 16 de maio de 2012.
  3. Sistemas Digitais, Dep. Armas e Electrónica – Escola Naval (V.1.7 V.Lobo 2010). Página visitada em 17 de maio de 2012.