Linguagem de programação

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Trecho de programa na linguagem de programação C.

Uma linguagem de programação é um método padronizado para comunicar instruções para um computador.[1] É um conjunto de regras sintáticas e semânticas usadas para definir um programa de computador.[2] [Nota 1] Permite que um programador especifique precisamente sobre quais dados um computador vai atuar, como estes dados serão armazenados ou transmitidos e quais ações devem ser tomadas sob várias circunstâncias. Linguagens de programação podem ser usadas para expressar algoritmos com precisão.

O conjunto de palavras (lexemas classificados em tokens), compostos de acordo com essas regras, constituem o código fonte de um software.[3] Esse código fonte é depois traduzido para código de máquina, que é executado pelo processador.[3]

Uma das principais metas das linguagens de programação é permitir que programadores tenham uma maior produtividade, permitindo expressar suas intenções mais facilmente do que quando comparado com a linguagem que um computador entende nativamente (código de máquina).[4] Assim, linguagens de programação são projetadas para adotar uma sintaxe de nível mais alto, que pode ser mais facilmente entendida por programadores humanos. Linguagens de programação são ferramentas importantes para que programadores e engenheiros de software possam escrever programas mais organizados e com maior rapidez.

Linguagens de programação também tornam os programas menos dependentes de computadores ou ambientes computacionais específicos (propriedade chamada de portabilidade[5] ). Isto acontece porque programas escritos em linguagens de programação são traduzidos para o código de máquina do computador no qual será executado em vez de ser diretamente executado. Uma meta ambiciosa do Fortran, uma das primeiras linguagens de programação, era esta independência da máquina onde seria executada.[6] [7]

História[editar | editar código-fonte]

O primeiro trabalho de linguagem de programação foi criado por Ada Lovelace, grande amiga de Charles Babbage.[8] O projeto da primeira calculadora mecânica programável foi idealizado por Charles Babbage[9] que, após gastar fortunas e um longo tempo, não conseguiu concretizar o projeto.[10] A linguagem de programação ADA foi batizada em homenagem a esta primeira programadora.[11]

Uma das primeiras linguagens de programação para computadores foi provavelmente Plankalkül, criada por Konrad Zuse na Alemanha Nazista,[12] mas que teve pouco ou nenhum impacto no futuro das linguagens de programação.

O primeiro compilador foi escrito por Grace Hopper,[13] em 1952, para a linguagem de programação A-0.[14] A primeira linguagem de programação de alto nível amplamente usada foi Fortran, criada em 1954.[15] [14] Em 1957 foi criada B-0, sucessora da A-0, que daria origem a Flow-Matic (1958), antecessor imediato de COBOL, de 1959.[16] O COBOL foi uma linguagem de ampla aceitação para uso comercial.[16] A linguagem ALGOL foi criada em 1958-1960[17] O ALGOL-60 teve grande influência no projeto de muitas linguagens posteriores.[18]

A linguagem Lisp foi criada em 1958 e se tornou amplamente utilizada na pesquisa na área de ciência da computação mais proeminentemente na área de Inteligência Artificial.[19] Outra linguagem relacionada ao campo da IA que surge em 1972 é a linguagem Prolog, uma linguagem do paradigma lógico.[20]

A orientação a objetos é outro marco importante na história das linguagens de programação. A linguagem Simula 67 introduz o conceito de classes.[21] A linguagem Smalltalk[22] [23] expande o conceito de classes e se torna a primeira linguagem de programação que oferecia suporte completo à programação orientada a objetos.[24] A linguagem C++ (originalmente conhecida como C com classes) populariza a orientação a objetos.[25]

Diversas linguagens de programação surgiram desde então. Entre estas incluem-se C♯,[26] VB.NET, Java, Object Pascal, Objective-C, PHP, Python,[27] SuperCollider, linguagem D [28] e Ruby.[29] [Nota 2]

Interpretação e compilação[editar | editar código-fonte]

O processo da compilação.

Uma linguagem de programação pode ser convertida, ou traduzida, em código de máquina por compilação ou interpretada por um processo denominado interpretação. Em ambas ocorre a tradução do código fonte para código de máquina.[30]

Se o método utilizado traduz todo o texto do programa (também chamado de código), para só depois executar[Nota 3] o programa, então diz-se que o programa foi compilado e que o mecanismo utilizado para a tradução é um compilador (que por sua vez nada mais é do que um programa).[31] A versão compilada do programa tipicamente é armazenada, de forma que o programa pode ser executado um número indefinido de vezes sem que seja necessária nova compilação, o que compensa o tempo gasto na compilação. Isso acontece com linguagens como Pascal[32] e C.

Se o texto do programa é executado à medida que vai sendo traduzido, como em JavaScript, BASIC, Python ou Perl, num processo de tradução de trechos seguidos de sua execução imediata, então diz-se que o programa foi interpretado e que o mecanismo utilizado para a tradução é um interpretador. Programas interpretados são geralmente mais lentos do que os compilados, mas são também geralmente mais flexíveis, já que podem interagir com o ambiente mais facilmente.[33]

Embora haja essa distinção entre linguagens interpretadas e compiladas, as coisas nem sempre são tão simples. Há linguagens compiladas para um código de máquina virtual (sendo esta máquina virtual apenas mais um software, que emula a máquina virtual sendo executado em uma máquina real), como Java[34] (compila para a plataforma Java[35] ) e C♯ (compila para a plataforma CLI[36] ). E também há outras formas de interpretar em que os códigos fontes, ao invés de serem interpretados linha-a-linha, têm blocos "compilados" para a memória, de acordo com as necessidades, o que aumenta a performance dos programas quando os mesmos módulos são chamados várias vezes, técnica esta conhecida como JIT.

Como exemplo, podemos citar a linguagem Java. Nela, um compilador traduz o código java para o código intermediário (e portável) da JVM. As JVMs originais interpretavam esse código, de acordo com o código de máquina do computador hospedeiro, porém atualmente elas compilam, segundo a técnica JIT o código JVM para código hospedeiro.

A tradução é tipicamente feita em várias fases, sendo as mais comuns a análise léxica, a análise sintática (ou parsing), a geração de código e a otimização.[37] Em compiladores também é comum a geração de código intermediário.[Nota 4]

Conceitos[editar | editar código-fonte]

Programação estruturada[editar | editar código-fonte]

Programação estruturada é uma forma de programação de computadores que preconiza que todos os programas possíveis podem ser reduzidos a apenas três estruturas: sequência, decisão e repetição.[38] Um dos primeiros a preconizar a programação estruturada foi Haskell B. Curry[39] [Nota 5] Tendo, na prática, sido transformada na Programação modular, a Programação estruturada orienta os programadores para a criação de estruturas simples em seus programas, usando as sub-rotinas e as funções. Foi a forma dominante na criação de software entre a programação linear e a programação orientada por objetos.[40] Apesar de ter sido sucedida pela programação orientada por objetos, pode-se dizer que a programação estruturada ainda é marcantemente influente, uma vez que grande parte das pessoas ainda aprendem programação através dela. Porém, a orientação a objetos superou o uso das linguagens estruturadas no mercado.[41]

Programação modular[editar | editar código-fonte]

Niklaus Wirth em 2005. Criador da linguagem Pascal entre outras.

Programação modular é uma forma de programação no qual o desenvolvimento das rotinas de programação é feito através de módulos, que são interligados entre si através de uma interface comum.[42] Foi apresentado originalmente pela Information & Systems Institute, Inc. no National Symposium on Modular Programming em 1968, com a liderança de Larry Constantine. Exemplos de linguagens que orientaram seu projeto para este aspecto estão as linguagens Modula-2,[43] [44] desenvolvida por Niklaus Wirth e a Modula-3.[45] .

Programação orientada a objetos[editar | editar código-fonte]

Orientação a objetos, também conhecida como Programação Orientada a Objetos (POO), ou ainda em inglês Object-Oriented Programming (OOP) é um paradigma de análise, projeto e programação de sistemas de software baseado na composição e interação entre diversas unidades de software chamadas de objetos. O extensivo uso de objetos, particularmente em conjunção com o mecanismo de herança, caracteriza o estilo de programação orientada a objetos.[46] Em alguns contextos, prefere-se usar modelagem orientada ao objeto (UML), em vez de programação. De fato, o paradigma "orientação a objetos" tem bases conceituais e origem no campo de estudo da cognição, que influenciou a área de inteligencia artificial e da lingüística no campo da abstração de conceitos do mundo real. Na qualidade de método de modelagem, é tida como a melhor estratégia, e mais natural, para se eliminar o "gap semântico", dificuldade recorrente no processo de modelar o mundo real, no domínio do problema, em um conjunto de componentes de software que seja o mais fiel na sua representação deste domínio. Facilitaria a comunicação do profissional modelador e do usuário da área alvo, na medida em que a correlação da simbologia e conceitos abstratos do mundo real e da ferramenta de modelagem (conceitos, terminologia, símbolos, grafismo e estratégias) fosse a mais óbvia, natural e exata possível. A análise e projeto orientados a objetos tem como meta identificar o melhor conjunto de objetos para descrever um sistema de software.[47] O funcionamento deste sistema se dá através do relacionamento e troca de mensagens entre estes objetos. Na programação orientada a objetos, implementa-se um conjunto de classes que definem os objetos presentes no sistema de software. Cada classe determina o comportamento (definido nos métodos) e estados possíveis (atributos) de seus objetos, assim como o relacionamento com outros objetos.[42]

Programação linear[editar | editar código-fonte]

Em matemática, problemas de Programação Linear são problemas de otimização nos quais a função objetivo e as restrições são todas lineares.[48] Programação Linear é uma importante área da otimização por várias razões. Muitos problemas práticos em pesquisa operacional podem ser expressos como problemas de programação linear. Certos casos especiais de programação linear, tais como problemas de network flow e problemas de multicommodity flow são considerados importantes o suficiente para que se tenha gerado muita pesquisa em algoritmos especializados para suas soluções. Vários algoritmos para outros tipos de problemas de otimização funcionam resolvendo problemas de PL como sub-problemas. Historicamente, idéias da programação linear inspiraram muitos dos conceitos centrais de teoria da otimização, tais como dualidade, decomposição, e a importância da convexidade e suas generalizações.

Classificação[editar | editar código-fonte]

As linguagens de programação podem ser classificadas e sub-classificadas de várias formas.

Classificação da ACM[editar | editar código-fonte]

A ACM mantém um sistema de classificação[49] com os seguintes sub-itens:

  • Linguagens aplicativas, ou de aplicação
  • Linguagens concorrentes, distribuídas e paralelas
  • Linguagens de fluxo de dados
  • Linguagens de projeto
  • Linguagens extensíveis
  • Linguagens de montagem e de macro
  • Linguagens de microprogramação
  • Linguagens não determinísticas
  • Linguagens não procedurais
  • Linguagens orientadas a objeto
  • Linguagens de aplicação especializada
  • Linguagens de altíssimo nível[Nota 6]

Quanto ao paradigma[editar | editar código-fonte]

Diferentes linguagens de programação podem ser agrupadas segundo o paradigma que seguem para abordar a sua sintaxe e semântica. Os paradigmas se dividem em dois grandes grupos: imperativo e declarativo.[50]

Paradigmas Imperativos[editar | editar código-fonte]

Os paradigmas imperativos são aqueles que facilitam a computação por meio de mudanças de estado.[50] Se dividem em:

Paradigmas Declarativos[editar | editar código-fonte]

Os paradigmas declarativos são aqueles nos quais um programa especifica uma relação ou função.[50] Se dividem em:

  • O paradigma funcional. Linguagens deste paradigma não incluem qualquer provisão para atribuição ou dados mutáveis [53] Na programação funcional, o mapeamento entre os valores de entrada e saída são alcançados mais diretamente. Um programa é uma função (ou grupo de funções), tipicamente constituída de outras funções mais simples.[54] Exemplos de linguagens deste paradigma são as linguagens Lisp[55] , Scheme[56] e Haskell[57]

Quanto a estrutura de tipos[editar | editar código-fonte]

  • Fracamente tipada, como PHP e Smalltalk, onde o tipo da variável muda dinamicamente conforme a situação.
  • Fortemente tipada, como Java e Ruby, onde o tipo da variável, uma vez atribuído, se mantém o mesmo até ser descartada da memória.[61]
  • Dinamicamente tipada, como SNOBOL, APL, Awk, Perl, Python e Ruby, onde o tipo da variável é definido em tempo de execução.[61]
  • Estaticamente tipada, como Java e C, onde o tipo da variável é definido em tempo de compilação.[62]

Quanto ao grau de abstração[editar | editar código-fonte]

  • Linguagem de programação de baixo nível, cujos simbolos são uma representação direta do código de máquina que será gerado, onde cada comando da linguagem equivale a um "opcode" do processador, como Assembly.[63]
  • Linguagem de programação de médio nível,[Nota 7] que possui símbolos que podem ser convertidos diretamente para código de máquina (goto, expressões matemáticas, atribuição de variáveis), mas também símbolos complexos que são convertidos por um compilador. Exemplo: C, C++
  • Linguagem de programação de alto nível, composta de símbolos mais complexos, inteligível pelo ser humano e não-executável diretamente pela máquina, no nível da especificação de algoritmos, como Pascal,[32] Fortran, ALGOL,Java e SQL.[63]

Quanto à geração[editar | editar código-fonte]

A classificação das linguagens de programação em gerações é uma questão que apresenta divergências de autor para autor. Segundo Maclennan,[64] as linguagens se dividem em cinco gerações com as seguintes características:

  • Primeira geração - São linguagens onde suas estruturas de controle são aparentemente orientadas a máquina. As instruções condicionais não são aninhadas e dependem fortemente de instruções de desvio incondicional como o GOTO. Uma linguagem típica desta geração é a linguagem Fortran.[64]
  • Segunda geração - São linguagens onde as estruturas de controle são estruturadas de forma a minimizar ou dispensar o uso de instruções GOTO. A segunda geração elaborou melhor e generalizou diversas estruturas de controle das linguagens de primeira geração. Uma das grandes contribuições desta geração foi suas estruturas de nomes, que eram hierarquicamente aninhadas. Isto permitiu melhor controle de espaços de nomes e uma eficiente alocação dinâmica de memória. Uma linguagem típica desta geração é o Algol 60.[64]
  • Terceira geração - São linguagens que dão ênfase a simplicidade e eficiência. Uma linguagem típica desta geração é a linguagem Pascal.[32] As estruturas de dados desta geração mostram um deslocamento da máquina para a aplicação. As estruturas de controle são mais simples e eficientes.[64]
  • Quarta geração - Esta geração é essencialmente o sinônimo para linguagens com abstração de dados. A maioria das linguagens desta geração focam na modularização e no encapsulamento. Uma linguagem típica desta geração é a linguagem Ada.[64]
  • Quinta geração - Nesta geração, Maclennan agrupa diversos paradigmas como a orientação a objeto e o paradigma funcional, paradigma lógico.[64]

Henri Bal e Dick Grune, já apresentam uma classificação em gerações de forma diferente, enfatizando mais o aspecto da aplicação. São elencadas 6 gerações.[65]

Doris Apleby e Julius J. VandeKopple dividem as linguagens em quatro gerações que coincidem com as quatro primeiras gerações elencadas por Henri Bal e Dick Grune.[50]

Lista de linguagens[editar | editar código-fonte]

Livros sobre diversas linguagens de programação

Existem várias linguagens de programação; de acordo com o Índice Tiobe, as 20 mais populares são:[41]

  1. C
  2. Java
  3. Objective-C
  4. C++
  5. PHP
  6. C♯
  7. Visual Basic
  8. Python
  9. Perl
  10. JavaScript
  11. Ruby
  12. Visual Basic .NET
  13. Transact-SQL
  14. Lisp
  15. Pascal
  16. Bash
  17. PL/SQL
  18. Delphi / Object Pascal
  19. Ada
  20. MATLAB

Notas[editar | editar código-fonte]

  1. Edsger Dijkstra em seu livro A Discipline of Programming assim define as linguagens de programação: "Eu vejo uma linguagem de programação principalmente como um veículo para a descrição (potencialmente muito sofisticada) de mecanismos abstratos" Dijkstra, Edsger W. A Discipline of Programming (em ). Englewood Cliffs, New Jersey: Prentice Hall, 1976. 217 pp. p. 9. ISBN 0-13-215871-X.
  2. Para um mapa abrangente da história das linguagens de programação ver: Mapa da história das linguagens de programação (em inglês). Visitado em 1 de dezembro de 2010.
  3. ou rodar, como se diz no jargão da computação
  4. Veja também Compilador.
  5. Citação de Knuth do memorando de Curry: "O primeiro passo no planejamento do programa é o de analisar a computação em certas partes principais, chamadas aqui de divisões, de modo que o programa possa ser sintetizado a partir delas. As partes principais devem ser tais que, ou pelo menos algumas delas, são cálculos independentes em si próprios, ou modificações desses cálculos." em: Knuth, Donald E. Selected Papers on Computer Languages (em ). Ventura Hall, Stanford: CSLI, 2003. Capítulo 1-The Early Development of Programming Languages. 594 pp. p. 17. ISBN 1-57586-382-0.
  6. Sussman et al. menciona que as linguagens de altíssimo nível são programadas em termos de sentenças declarativas. Em: Abelson, Harold; Sussman, Gerald Jay; Sussman, Julie. Structure and Interpretation of Computer Programs (em ). 2ª. ed. Cambridge, Massachusetts: McGraw-Hill, 1996. 640 pp. p. 22. ISBN 0-07-000484-6.
  7. Muitos autores classificam as linguagens quanto ao grau de abstração em apenas dois: alto e baixo. Alguns autores como Dennis Ritchie e Kenneth Thompson classificam algumas linguagens como C e CPL tanto como baixo nível como alto nível como em: Appleby, Doris; VandeKopple, Julius J. Programming Languages: Paradigm and Practice. 2ª. ed. New York: McGraw-Hill, 1997. 444 pp. p. 132-134. ISBN 0-07-005315-4.

Referências

  1. Dershem, Herbert L.; Jipping, Michael J.. Programming Languages: Structures and models (em ). 2ª. ed. Boston: PWS Publishing Company, 1995. 432 pp. p. 1. ISBN 0-534-94740-9.
  2. Fischer, Alice E.; Grodzinsky, Frances. The Anatomy of Programming Languages (em ). Englewood Cliffs, New Jersey: Prentice Hall, 1993. 557 pp. p. 3. ISBN 0-13-035155-5.
  3. a b Aho, Alfred V.; Lam, Monica S.; Sethi, Ravi; Ullman, Jeffrey D. Compiladores: Princípios, técnicas e ferramentas. São Paulo: Addison-Wesley, Pearson, 2008. 634 pp. p. 3-5. ISBN 978-85-88639-24-9.
  4. Melo, Ana Cristina Vieira de; Silva, Flávio Soares Corrêa da. Princípios de Linguagens de Programação. São Paulo: Edgard Blücher Ltda, 2003. 211 pp. p. 7-11. ISBN 85-212-0322-5.
  5. Hannan, James (editor); Oliver, Paul (autor do capítulo). Computer Programming Management. New York: Van Nostrand Reinhold, 1982. Capítulo 6-Program Portability. 155 pp. p. 89-100. ISBN 0-442-20920-7.
  6. Sammet, Jean E. Programming Languages: History and Fundamentals (em ). Englewood Cliffs, New Jersey: Prentice Hall, 1969. 785 pp. p. 14-16. ISBN 0-13-729988-5.
  7. Backus, John. (julho 1979). "The History of Fortran I, II, and III" (em ingles). Annals of The History of Computing 1 (1): 80. Arlington, VA: American Federation of Information Processing Societies. ISSN 1058-6180.
  8. Huskey, Velma R.; Huskey, Harry D.. (Outubro 1980). "Lady Lovelace and Charles Babbage" (em inglês). Annals of The History of Computing 2 (4): 384 p. 299-329. Arlington, VA: American Federation of Information Processing Societies. ISSN 1058-6180.
  9. Breton, Philippe. História da Informática. São Paulo: UNESP, 1991. 260 pp. p. 68-69. ISBN 85-7139-021-5.
  10. Gonick, Larry. Introdução Ilustrada à Computação. São Paulo: Harper & Row do Brasil, 1984. 242 pp. p. 51-59.
  11. Smith, James F,; Frank, Thomas S. Introduction to Programming Concepts and Methods with Ada. Nova Iorque, EUA: McGraw-Hill, 1994. 545 pp. p. 7-8. ISBN 0-07-911725-2.
  12. Zuse, Konrad. (Julho 1980). "Installation of the German Computer Z4 in Zurich in 1950" (em inglês). Annals of The History of Computing 2 (3): 384 p. 239-241. Arlington, VA: American Federation of Information Processing Societies. ISSN 1058-6180.
  13. Lemone, Karen A.. Fundamentals of Compilers: An Introduction to Computer Language Translation. Boca Raton: CRC, 1992. 184 pp. ISBN 0-8493-7341-7.
  14. a b Wexelblat, Richard L.(Editor). History of Programming Languages. New York: Academic Press, 1981. 758 pp. p. 6-15. ISBN 0-12-745040-8.
  15. Metropolis, N.(Ed.); Howlett, J.(Ed.); Rota, Gian-Carlo(Ed.). A History of Computing in the Twentieth Century: A collection of essays (em ). New York: Academic Press, 1980. 130-131 pp. ISBN 0-12-491650-3.
  16. a b Wexelblat, Richard L.(Editor). History of Programming Languages. New York: Academic Press, 1981. 758 pp. p. 199-278. ISBN 0-12-745040-8.
  17. Horowitz, Ellis (editor do livro); Nauer, P. (editor do capítulo). Programming Languages: A Grand Tour (em ). 3ª. ed. New York: Academic Press, 1987. Capítulo Report on the Algorithmic Language ALGOL 60. 512 pp. p. 44-60. ISBN 0-88175-142-1.
  18. Horowitz, Ellis (editor do livro); Knuth, D. E. Programming Languages: A Grand Tour (em ). 3ª. ed. New York: Academic Press, 1987. Capítulo The Remaining Troublespots in ALGOL 60. 512 pp. p. 61-68. ISBN 0-88175-142-1.
  19. Pratt, Terrence W.; Zelkowitz, Marvin V. Programming Languages: Design and Implementation (em ). 4ª. ed. Upper Saddle River, New Jersey: Prentice hall, 2001. 649 pp. p. 420-421. ISBN 0-13-027678-2.
  20. Gray, Peter. Logic, Algebra and Databases (em ). Chichester: Ellis Horwood, 1984. Capítulo Representing programs by clauses: Prolog. 294 pp. p. 73. ISBN 0-85312-709-3.
  21. Horowitz, Ellis. Fundamentals of Programming Languages (em ). 2ª. ed. Rockville, Maryland: Computer Science Press, 1984. 446 pp. p. 17. ISBN 0-088175-004-2.
  22. Goldberg, Adele; Robson, David. Smalltalk-80: The language (em ). Reading, Massachusetts: Addison-Wesley, 1989. 591 pp. ISBN 0-201-13688-0.
  23. Lewis, Simon. The Art and Science of Smalltalk: An Introduction to Object-Oriented Programming using VisualWorks (em ). London: Prentice Hall, 1995. 212 pp. ISBN 0-13-371345-8.
  24. Sebesta, Robert W. Conceitos de Linguagens de Programação. 9ª. ed. Porto Alegre: Bookman, 2010. 792 pp. p. 108-131. ISBN 978-85-7780-791-8.
  25. a b Schildt, Herbert. C++: The Complete Reference (em ). 3ª. ed. Berkeley: McGra-Hill, 1998. 1008 pp. p. 256. ISBN 0-07-882476-1.
  26. Liberty, Jesse. Programming C# (em ). 2ª. ed. Beijing: O´Reilly, 2002. 629 pp. ISBN 0-596-00309-9.
  27. a b Lutz, Mark. Programming Python (em ). 2ª. ed. Beijing: O´Reilly, 2001. 1255 pp. ISBN 0-596-00085-5.
  28. Cade Metz (7 de julho, 2014). The Next Big Programming Language You’ve Never Heard Of (em Inglês) Wired Condé Nast Publications. "Today, Alexandrescu is a research scientist at Facebook, where he and a team of coders are using D to refashion small parts of the company’s massive operation."
  29. a b Thomas, Dave. Programming Ruby 1.9: The Pragmatic Programmers´Guide (em ). Raleigh, North Carolina: O´Reilly, 2002. 930 pp. ISBN 1-934356-08-5.
  30. Cooper, Torczon. Engineering a Compiler. San Francisco: Morgan Kaufmann, 2003. p. 2. ISBN 1-55860-698-X.
  31. Aho, Alfred V.; Ullman, Jeffrey D.. Principles of Compiler Design. Reading, Massachusetts, EUA: Addison-Wesley, 1977. 604 pp. p. 1. ISBN 0-201-00022-9.
  32. a b c d Pacitti, Tércio; Aktinson, Cyril P; Teles, Antonio Anibal de Souza (autor do apêndice 4a). Programação e Métodos Computacionais. 4ª. ed. Rio de Janeiro: LTC, 1983. 431 pp. p. 293. 2 vols. vol. 1. ISBN 85-216-0283-9.
  33. Scott, Michael L. Programming Language Pragmatics. 2ª. ed. Boston: Morgan Kauffman, 2006. 875 pp. p. 14-15. ISBN 978-0-12-633951-2.
  34. Schildt, Herbert. Java 2: The Complete reference. 4ª. ed. Berkeley: McGraw-Hill, 2001. 1076 pp. ISBN 0-07-213084-9.
  35. Engel, Joshua. Programming for the Java Virtual Machine. Reading, Massachusetts: Addison & Wesley, 1999. 488 pp. p. 355. ISBN 0-201-30972-6.
  36. Cough, John. Compiling for the .NET Common Language Runtime (CLR). Upper Saddle River: Prentice Hall, 2002. 391 pp. p. 2-12. ISBN 0-13-062296-6.
  37. Holmes, Jim. Object-Oriented Compiler Construction. Englewood Cliffs, Nova Jersey: Prentice Hall, 1995. 483 pp. p. 2-3. ISBN 0-13-630740-X.
  38. Dahl, O. J.; Dijkstra, E. W.; Hoare, C. A . R. Structured Programming (em ). London: Academic Press, 1972. Capítulo I-Notes on Structured Programming. 220 pp. p. 1-82. ISBN 0-12-200550-3.
  39. Knuth, Donald E. Selected Papers on Computer Languages (em ). Ventura Hall, Stanford: CSLI, 2003. Capítulo 1-The Early Development of Programming Languages. 594 pp. p. 1-94. ISBN 1-57586-382-0.
  40. Tucker, Allen; Noonan, Robert. Programming Languages: Principles and paradigms (em ). Boston: McGraw-Hill, 2002. 411 pp. p. 170-185. ISBN 0-07-238111-6.
  41. a b Linguagens de programação populares (em inglês) tiobe.com. Visitado em 20 de junho de 2013.
  42. a b Guezzi, Carlo; Jazayeri, Mehdi. Programming Language Concepts (em ). 3ª. ed. New York: John Wiley & Sons, 1998. 427 pp. p. 7. ISBN 0-471-10426-4.
  43. Wirth, Niklaus. Programando em Modula 2. Rio de Janeiro: LTC, 1989. 207 pp. ISBN 85-216-0658-3.
  44. Silva, José carlos G.; Assis, Fidelis Sigmaringa G. de. Linguagens de Programação: Conceitos e Avaliação. Rio de Janeiro: McGraw-Hill/Embratel, 1988. 213 pp. p. 125. CDD-001.6424.
  45. Harbison, Samuel P. Modula-3 (em ). New York: Prentice-Hall, 1992. 312 pp. ISBN 0-13-596404-0.
  46. Friedman, Daniel P.; Wand, Mitchell; haynes, Christopher T. Essentials of Programming Languages (em ). Cambridge, Massachusetts: MIT Press, 1998. 536 pp. p. 214. ISBN 0-262-06145-7.
  47. Sommerville, Ian. Software Engineering (em ). 6ª. ed. Harlow: Addison-Wesley, 2001. 693 pp. p. 272-273. ISBN 0-201-39815-X.
  48. Bregalda, Paulo F.; Oliveira, Antonio A. F. de; Bornstein, Cláudio T. Introdução à Programação Linear. 3ª. ed. Rio de Janeiro: Campus, 1988. 329 pp. p. 61. ISBN 85-7001-342-6.
  49. Sistema de classificação da ACM (em inglês) acm.uiuc.edu. Visitado em 1 de dezembro de 2010.
  50. a b c d e Appleby, Doris; VandeKopple, Julius J. Programming Languages: Paradigm and Practice. 2ª. ed. New York: McGraw-Hill, 1997. 444 pp. p. 8-13. ISBN 0-07-005315-4.
  51. Overview - D Programming Language (em Inglês) dlang.org. Visitado em 28 jul 2014. "D programs can be written either in C style function-and-data, C++ style object-oriented, C++ style template metaprogramming, or any mix of the three."
  52. Watt, David A. Programming Language Concepts and Paradigms (em ). New York: Prentice Hall, 1990. Capítulo 11-The Concurrent Programming Paradigm. 322 pp. p. 205-218. ISBN 0-13-728866-2.
  53. Abelson, Harold; Sussman, Gerald Jay; Sussman, Julie. Structure and Interpretation of Computer Programs (em ). 2ª. ed. Cambridge, Massachusetts: McGraw-Hill, 1996. 640 pp. p. 352-360. ISBN 0-07-000484-6.
  54. Watt, David A. Programming Language Concepts and Paradigms (em ). New York: Prentice Hall, 1990. Capítulo 13-The Funcional Programming Paradigm. 322 pp. p. 230-252. ISBN 0-13-728866-2.
  55. McCarthy, John; Abrahams, Paul W.; Edwards, Daniel J.; Hart, Timothy P.; Levin, Michael I. Lisp 1.5 Programmer´s Manual. Cambridge, Massachusetts: The MIT Press, 1962. 106 pp. p. 1. ISBN 0-262-13011-4.
  56. Dybvig, R. Kent. The Scheme Programming Language: Ansi Scheme. New Jersey: Prentice Hall PTR, 1996. ISBN 0-13-454646-6.
  57. Hudak, Paul. Tha Haskell School of Expression: Learning Functional Programming Through Multimedia. Cambridge: Cambridge University Press, 2000. 363 pp. ISBN 0-521-64408-9.
  58. Watt, David A. Programming Language Concepts and Paradigms (em ). New York: Prentice Hall, 1990. Capítulo 14-The Logic Programming Paradigm. 322 pp. p. 253-265. ISBN 0-13-728866-2.
  59. Bratko, Ivan. Prolog: Programming for Artificial Intelligence (em ). 3ª. ed. Harlow, England: Addison-Wesley, 2001. 46-50 pp. ISBN 0201-40375-7.
  60. Hill, Patricia; Lloyd, John. The Gödel Programming Language (em ). Cambridge: The MIT Press, 1994. 350 pp.
  61. a b Finkel, Raphael A. Advance Programming Language Design (em ). Menlo Park, California: Addison-Wesley, 1995. 480 pp. p. 64. ISBN 0-8053-1191-2.
  62. Guezzi, Carlo; Jazayeri, Mehdi. Conceitos de Linguagens de Programação. Rio de Janeiro: Campus, 1985. 306 pp. p. 55. ISBN 85-7001-420-1.
  63. a b Sethi, Ravi. Programming Languages: Concepts & Constructs (em ). 2ª. ed. Reading, Massachusetts: Addison-Wesley, 1996. 640 pp. p. 4-8. ISBN 0-201-59065-4.
  64. a b c d e f Maclennan, Bruce J. Principles of Programming Languages: Design, Evaluation and Implementation (em ). 3ª. ed. Oxford: Oxford University Press, 1999. 509 pp. p. 92;163-164;208;305-306. ISBN 0-19-511306-3.
  65. Bal, Henri E.; Grune, Dick. Programming Language Essentials (em ). Wokingham: Addison-Wesley, 1994. 231 pp. p. 10-11. ISBN 0-201-63179-2.

Bibliografia[editar | editar código-fonte]

  • ORGANICK, E. I.;FORSYTHE, A. I.;PLUMMER, R. P.. Programming Language Structures. New York: Academic Press, 1978. 659 pp. ISBN 0-12-528260-5.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]