Módulo volumétrico

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Ilustração de compressão uniforme

O módulo volumétrico (K), é um parâmetro que descreve a elasticidade volumétrica, ou seja, a tendência de um material em se deformar em todas as direções quando uniformemente carregado em todas as direções (hidrostaticamente). Esse módulo é definido como a razão entre a tensão volumétrica e a deformação volumétrica, e é o inverso da compressibilidade.[1]

K=-V\frac{\partial P}{\partial V}

onde

K é o Módulo volumétrico, P é a pressão, V é o volume e ~\frac{\partial P}{\partial V} é a derivada parcial da pressão em relação ao volume.

Ver também[editar | editar código-fonte]

Referências

  1. Wolfgang Bauer, Gary D. Westfall, Helio Dias, Física para Universitários - Relatividade, Oscilações, Ondas e Calor , McGraw Hill Brasil, 2013 ISBN 8-580-55160-9

Ligações externas[editar | editar código-fonte]

Fórmulas de conversão
Materiais lineares homogêneos e isotrópicos tem suas propriedades elásticas determinadas unicamente por qualquer dois módulos dentre estes, e assim dados quaisquer dois, qualquer outro dos módulos elásticos pode ser determinado de acordo com estas fórmulas.
(K,\,E) (K,\,\lambda) (K,\,G) (K,\, \nu) (E,\,G) (E,\,\nu) (\lambda,\,G) (\lambda,\,\nu) (G,\,\nu) (G,\,M)
K=\, K K K K \tfrac{EG}{3(3G-E)} \tfrac{E}{3(1-2\nu)} \lambda+ \tfrac{2G}{3} \tfrac{\lambda(1+\nu)}{3\nu} \tfrac{2G(1+\nu)}{3(1-2\nu)} M - \tfrac{4G}{3}
E=\, E \tfrac{9K(K-\lambda)}{3K-\lambda} \tfrac{9KG}{3K+G} 3K(1-2\nu)\, E E \tfrac{G(3\lambda + 2G)}{\lambda + G} \tfrac{\lambda(1+\nu)(1-2\nu)}{\nu} 2G(1+\nu)\, \tfrac{G(3M-4G)}{M-G}
\lambda=\, \tfrac{3K(3K-E)}{9K-E} \lambda K-\tfrac{2G}{3} \tfrac{3K\nu}{1+\nu} \tfrac{G(E-2G)}{3G-E} \tfrac{E\nu}{(1+\nu)(1-2\nu)} \lambda \lambda \tfrac{2 G \nu}{1-2\nu} M - 2G\,
G=\, \tfrac{3KE}{9K-E} \tfrac{3(K-\lambda)}{2} G \tfrac{3K(1-2\nu)}{2(1+\nu)} G \tfrac{E}{2(1+\nu)} G \tfrac{\lambda(1-2\nu)}{2\nu} G G
\nu=\, \tfrac{3K-E}{6K} \tfrac{\lambda}{3K-\lambda} \tfrac{3K-2G}{2(3K+G)} \nu \tfrac{E}{2G}-1 \nu \tfrac{\lambda}{2(\lambda + G)} \nu \nu \tfrac{M - 2G}{2M - 2G}
M=\, \tfrac{3K(3K+E)}{9K-E} 3K-2\lambda\, K+\tfrac{4G}{3} \tfrac{3K(1-\nu)}{1+\nu} \tfrac{G(4G-E)}{3G-E} \tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)} \lambda+2G\, \tfrac{\lambda(1-\nu)}{\nu} \tfrac{2G(1-\nu)}{1-2\nu} M
Portal A Wikipédia possui o:
Portal de Ciência
Ícone de esboço Este artigo sobre Engenharia (genérico) é um esboço. Você pode ajudar a Wikipédia expandindo-o.