Matriz de incidência

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Uma matriz de incidência representa computacionalmente um grafo através de uma matriz bidimensional, onde uma das dimensões são vértices e a outra dimensão são arestas.

Dado um grafo G com n vértices e m arestas, podemos representá-lo em uma matriz n x m M. A definição precisa das entradas da matriz varia de acordo com as propriedades do grafo que se deseja representar, porém de forma geral guarda informações sobre como os vértices se relacionam com cada aresta (isto é, informações sobre a incidência de um vértice em uma aresta).

Para representar um grafo sem pesos nas arestas e não direcionado, basta que as entradas da matriz M contenham 1 se o vértice incide na aresta, 2 caso seja um laço (incide duas vezes) e 0 caso o vertice não incida na aresta.

6n-graph2.svg

Por exemplo, a matriz de incidência do grafo ao lado é

\begin{bmatrix}
2 & 1 & 1 & 0 & 0 & 0 & 0 & 0\\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\
\end{bmatrix}

Ver também[editar | editar código-fonte]