Produto vetorial

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em matemática, o produto vetorial ou produto externo, é uma operação binária sobre vetores em um espaço vetorial. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um escalar. Seu principal uso baseia-se no facto que o resultado de um produto vetorial é sempre perpendicular a ambos os vetores originais.

Definição[editar | editar código-fonte]

A notação do produto vetorial entre dois vetores a e b do espaço vetorial  \mathbf R^3 é a × b (em manuscritos, alguns matemáticos escrevem ab para evitar a confusão com a letra x). Podemos defini-lo como

\mathbf{a} \times \mathbf{b} = \mathbf\hat{n} \left| \mathbf{a} \right| \left| \mathbf{b} \right| sen \theta

onde θ é a medida do ângulo entre a e b (0° ≤ θ ≤ 180°) no plano definido pelos dois vetores, e \mathbf\hat{n} é o vetor unitário perpendicular a tanto a quanto b.

O problema com esta definição é que existem dois vetores unitários que são perpendiculares a a e b simultaneamente: se \mathbf\hat{n} é perpendicular, então -\mathbf\hat{n} também o é.

O resultado correto depende da orientação do espaço vetorial, i.e. da quiralidade do sistema de coordenadas (i, j, k). O produto vetorial a × b é definido de tal forma que (a, b, a × b) se torna destro se (i, j, k) é destro ou canhoto se (i, j, k) é canhoto.

Uma forma fácil de determinar o sentido do vetor resultante é a "regra da mão direita". Se um sistema de coordenadas é destro, basta apontar o indicador na direção do primeiro operando e o dedo médio na direção do segundo operando. Desta forma, o vetor resultante é dado pela direção do polegar.

Como o produto vetorial depende do sistema de coordenadas, seu resultado é referenciado como pseudovetor. Felizmente na natureza os produtos vetoriais aparecem aos pares, de maneira que a orientação do sistema de coordenadas é cancelado pelo segundo produto vetorial.

O produto vetorial pode ser representado graficamente, com respeito a um sistema de coordenadas destro, como se segue:

Crossproduct.png

Propriedades[editar | editar código-fonte]

Significado geométrico[editar | editar código-fonte]

O comprimento do produto vetorial, |a × b|, pode ser interpretado como a área do paralelogramo definido pelos vetores a e b. Isto significa que o produto misto (ou triplo-escalar) resulta no volume do paralelepípedo formado pelos vetores a, b e c.

Propriedades algébricas[editar | editar código-fonte]

O produto vetorial é anticomutativo,

a × b = -b × a,

distributivo sobre a adição,

a × (b + c) = a × b + a × c,

e compatível com a multiplicação escalar, tal que

(ra) × b = a × (rb) = r(a × b).

Não é associativo, mas satisfaz a identidade de Jacobi:

a × (b × c) + b × (c × a) + c × (a × b) = 0

A distributividade, linearidade e identidade de Jacobi mostram que R3 junto com a adição de vetores e o produto vetorial formam uma álgebra de Lie.

Além disso, dois vetores não nulos a e b são paralelos se e somente se a × b = 0.

Fórmula de Lagrange[editar | editar código-fonte]

Esta é uma fórmula útil e bem conhecida,

a × (b × c) = b(a · c) − c(a · b),

a qual é mais fácil de memorizar como “BAC menos CAB”. Esta fórmula é muito útil para simplificar cálculos com vetores na física. É importante notar, entretanto, que esta fórmula não se aplica quando do uso do operador nabla.

Um caso especial com respeito a gradiente em cálculo vetorial é:

 \begin{matrix}
 \nabla \times (\nabla \times \mathbf{f})
&=& \nabla      (\nabla \cdot  \mathbf{f} )
 - (\nabla \cdot \nabla) \mathbf{f}  \\
&=& \mbox{grad }(\mbox{div }   \mathbf{f} )
 - \mbox{laplacian }     \mathbf{f}.
\end{matrix}

Este é um caso especial da mais geral decomposição Hodge \Delta = d \partial + \partial d do Laplaciano Hodge.

Outra identidade útil de Lagrange é

 |a \times b|^2 + |a \cdot b|^2 = |a|^2 |b|^2.

Este é um caso especial da multiplicatividade |vw| = |v| |w| da norma na álgebra de quaternion.

Notação Matricial[editar | editar código-fonte]

Os vetores unitários i, j e k, para uma dado sistema ortogonal de coordenadas, satisfazem as seguintes igualdades:

i × j = k           j × k = i           k × i = j

Com estas regras, as coordenadas do resultado do produto vetorial de dois vetores podem ser calculadas facilmente, sem a necessidade de se determinar qualquer ângulo. Seja:

a = a1i + a2j + a3k = [a1, a2, a3]

e

b = b1i + b2j + b3k = [b1, b2, b3].

Então

a × b = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1].

A notação acima também pode ser escrita formalmente como o determinante de uma matriz:

\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
\end{bmatrix}

O determinante de três vetores pode ser recuperado como

det (a, b, c) = a · (b × c).

Intuitivamente, o produto vetorial pode ser descrito pelo método de Sarrus, onde


\begin{matrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_1 & a_2 & a_3 & a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 & b_1 & b_2 & b_3
\end{matrix}

Para os primeiros três vetores unitários, multiplique os elementos na diagonal da direita (ex. a primeira diagonal conteria i, a2, e b3). Para os três últimos vetores unitários, multiplique os elementos na diagonal da esquerda e então os multiplique por -1 (ex. a última diagonal conteria k, a2, e b1). O produto vetorial seria definido pela soma destes produtos:


\mathbf{i}(a_2b_3) + \mathbf{j}(a_3b_1) + \mathbf{k}(a_1b_2) - \mathbf{i}(a_3b_2) - \mathbf{j}(a_1b_3) - \mathbf{k}(a_2b_1)

O produto vetorial também pode ser descrito em termos de quaternions. Note por exemplo que as relações entre produtos vetoriais acima i, j, e k concordam com a relação multiplicativa entre os quaternions i, j, e k. Em geral, se representamos um vetor [a1, a2, a3] como o quaternion a1i + a2j + a3k, obtemos o produto vetorial tomando seus produtos e descartando a parte real do resultado (a parte real será o negativo do produto escalar de dois vetores). Mais sobre a conexão entre multiplicação de quaternion, operações de vetores e geometria pode ser encontrado em quaternions e rotação espacial.

Aplicações[editar | editar código-fonte]

O produto vetorial ocorre na fórmula do operador vetorial rotacional. É também utilizado para descrever a Força de Lorentz experimentada por uma carga elétrica movendo-se em um campo magnético. As definições de torque e momento angular também envolvem produto vetorial.

O produto vetorial pode também ser utilizado para calcular a normal de um triângulo ou outro polígono, o que é importante no ramo da computação gráfica e do desenvolvimento de jogos eletrônicos, para permitir efeitos que simulam iluminação, dentre outros.

Dimensões Maiores[editar | editar código-fonte]

O produto vetorial para vetores 7-dimensionais pode ser obtido da mesma maneira, porém usando-se os octônions em vez dos quatérnions.

Esse produto vetorial 7-dimensional tem as seguintes propriedades em comum com o habitual produto vetorial tridimensional:

x × (ay + bz) = ax × y + bx × z
(ay + bz) × x = ay × x + bz × x.
x × y + y × x = 0
  • É perpendicular a x e a y simultaneamente:
x · (x × y) = y · (x × y) = 0
  • Temos:
|x × y|2 = |x|2 |y|2 − (x · y)2.

Diferente do produto vetorial tridimensional, não satisfaz a identidade de Jacobi (a igualdade se manteria em 3 dimensões):

x × (y × z) + y × (z × x) + z × (x × y) ≠ 0

Os parágrafos a seguir contém expressões em itálico que ainda necessitam tradução

Para o caso geral (n-dimensional), não há análogo direto do produto vetorial. Entretanto existe o wedge product produto exterior (literalmente produto cunha), que possui propriedades semelhantes, exceto que o produto exterior de dois vetores passa a ser um 2-vector em vez de um vetor comum. O produto vetorial pode ser interpretado como sendo o produto exterior em três dimensões após usar-se a dualidade de Hodge para se identificar 2-vectores com vectores.

O produto exterior e o produto escalar podem ser combinados para formarem o produto de Clifford.

Ver também[editar | editar código-fonte]