Reductio ad absurdum

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Reductio ad absurdum (latim para "redução ao absurdo"1 , provavelmente originário do grego ἡ εις άτοπον απαγωγη, transl. e eis átopon apagoge, que significaria algo próximo a "redução ao impossível", expressão frequentemente usada por Aristóteles), também conhecida como um argumento apagógico, reductio ad impossibile ou, ainda, prova por contradição, é um tipo de argumento lógico no qual alguém assume uma ou mais hipóteses e, a partir destas, deriva uma consequência absurda ou ridícula, e então conclui que a suposição original deve estar errada. O argumento se vale do princípio da não-contradição (uma proposição não pode ser, ao mesmo tempo, verdadeira e falsa) e do princípio do terceiro excluído (uma proposição é verdadeira ou é falsa, não existindo uma terceira possibilidade).

Na lógica formal, reductio ad absurdum é usado quando uma contradição formal pode ser derivada de uma premissa, o que permite que alguém possa concluir que a premissa é falsa. Se uma contradição é derivada de uma série de premissas, isso mostra que pelo menos uma das premissas é falsa, mas outros meios devem ser utilizados para determinar qual delas.

Um exemplo de raciocínio dedutivo por redução ao absurdo foi a elegante prova matemática da irracionalidade da raiz quadrada de 2 apresentada por Aristóteles em Analytica Priora2 . Supondo que exista uma raiz racional de 2, e que ela possa ser expressa na forma a/b, é possível demonstrar que b deve ser par, e também que deve ser ímpar. Sendo absurda a hipótese de um número ser ao mesmo tempo par e ímpar, conclui-se que a raiz não pode ser expressa por um número racional.

Reductio ad absurdum também é usado muitas vezes para descrever um argumento no qual uma conclusão é derivada de uma crença que todos (ou pelo menos aqueles que argumentam contrariamente) aceitarão como falsa ou absurda. No entanto, essa é uma forma débil de redução, uma vez que a decisão de rejeitar a premissa requer que a conclusão seja aceita como absurda. Embora uma contradição formal seja, por definição, absurda (inaceitável), um argumento reductio ad absurdum simplório pode ser rejeitado simplesmente aceitando-se propositadamente a conclusão absurda, pois ela por si própria deixará transparecer o seu teor paradoxal.

Há uma concepção errônea comum de que reductio ad absurdum simplesmente denota um "argumento bobo" e é por si só uma falácia lógica. Contudo, isso não é correto. Uma redução ao absurdo apropriadamente estruturada constitui um argumento válido.


Referências

  1. A prova por redução ao absurdo na lógica clássica, por Maria da Paz Nunes de Medeiros. Princípios, vol. 2, Nº. 2, 1995. Dept. de Filosofia UFRN. ISSN 0104-8694. Acessada em 10-07-2011.
  2. Raiz quadrada de 2, na Wikipedia em inglês

Ligações externas[editar | editar código-fonte]

Portal A Wikipédia possui o:
Portal de Filosofia
Ícone de esboço Este artigo sobre Lógica é um esboço. Você pode ajudar a Wikipédia expandindo-o.