Sequência de Van der Corput

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Uma sequência de van der Corput é uma sequência de baixa discrepância no intervalo unitário, publicada em 1935 pelo matemático neerlandês Johannes van der Corput. Ela é construída pela inversão da representação na base n da sequência dos números naturais positivos (1, 2, 3, …). Por exemplo, para base 10, a sequência de van der Corput começa com:

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …

enquanto que, na base 2, a sequência de van der Corput começa com:

0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …

ou, equivalentemente:

\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \frac{9}{16}, \frac{5}{16}, \frac{13}{16}, \frac{3}{16}, \frac{11}{16}, \frac{7}{16}, \frac{15}{16}, \ldots

Os elementos da sequência de van der Corput (em qualquer base) formam um conjunto denso no intervalo unitário; em particular, para todo número real r em [0, 1] existe uma subsequência da sequência de van der Corput que converge para r. Os números da sequência estão uniformemente distribuídos sobre o intervalo unitário.

Implementação[editar | editar código-fonte]

Na linguagem de programaçao R, a sequência de van der Corput para a base 2 é gerada por runif.halton(n, 1), como um caso particular da sequência de Halton.

References[editar | editar código-fonte]

  • J. G. van der Corput, Verteilungsfunktionen. Proc. Ned. Akad. v. Wet., 38:813–821, 1935.

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.