Sistema de numeração hexadecimal

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Sistema hexadecimal)
Ir para: navegação, pesquisa
Sistemas de numeração por cultura
Numerais hindu-arábico
Árabe ocidental
Árabe oriental
Família indiana
Khmer
Mongólico
Thai
Numerais leste-asiáticos
Chinês
Counting rods
Japonês
Coreano
Suzhou
Numerais alfabéticos
Abjad
Armênio
Āryabhaṭa
Cirílica
Ge'ez
Grego (jônio)
Hebraico
Outros sistemas
Ático
Babilônica
Brahmi
Egípcios
Etrusco
Inuíte
Maia
Romano
Urnfield
Lista de sistemas de numeração
Sistema de numeração posicional
5, 10, 15, 20
2, 4, 8, 16, 32, 64
3, 6, 9, 12, 24, 30, 36, 60
1, 7, 13, 26

O sistema hexadecimal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.

Está vinculado a informática, pois os computadores costumam utilizar o byte ou octeto como unidade básica da memória; e, devido a um byte representar 2^8 = 256 valores possíveis, e isto poder representar-se como 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot 16^1 + 0 \cdot 16^0, o que, segundo o teorema geral da numeração posicional, equivale ao número em base 16 100_{16}, dois dígitos hexadecimais correspondem exactamente —permitem representar a mesma linha de inteiros— a um byte.

Ele é muito utilizado para representar números binários de uma forma mais compacta, pois é muito fácil converter binários pra hexadecimal e vice-versa. Dessa forma, esse sistema é bastante utilizado em aplicações de computadores e microprocessadores (programação, impressão e displays).

Devido ao sistema decimal geralmente usado para a numeração apenas dispor de dez símbolos, deve-se incluir seis letras adicionais para completar o sistema. O conjunto de símbolos fica, portanto, assim:

 S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}

Contagem em Hexadecimal[editar | editar código-fonte]

Assim como nos outros sistemas numéricos, após o uso de todos os dígitos hexadecimais, se inicia a repetição com a adição de outro dígito: (...) 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22... Pode parecer pouca a diferença para os números decimais, porem esses 6 dígitos a mais fazem muita diferença. Por exemplo, com dois dígitos, em decimal, é possível fazer 100 combinações diferentes. Em hexadecimal, esse número sobe para 256.

Conversão de Binário para Hexadecimal[editar | editar código-fonte]

Um dígito em hexadecimal pode representar um número binário de 4 dígitos, dessa forma, para transformar um binário em hexadecimal, separamos o binário em grupos de 4 bits, começando pela direita.

Exemplo:

Binário: 1101000101100011.

1º - separar em grupos de quatro bits:

1101 0001 0110 0011

2º - identificar os números hexadecimais correspondentes:

1101 = D
0001 = 1
0110 = 6
0011 = 3

Hexadecimal: D163.

Conversão de Hexadecimal para Binário[editar | editar código-fonte]

É o inverso do processo anterior. Cada digito será transformado em um número binário de 4 bits.

Exemplo:
Hexadecimal: F2A7

F = 1111
2 = 0010
A = 1010
7 = 0111

Binário: 1111001010100111.

Conversão de Decimal para Hexadecimal[editar | editar código-fonte]

Ver-se-á um exemplo numérico para obter o valor de uma representação hexadecimal: 3E0,A (16) = 3×16² + E×161 + 0×160 + A×16-1 = 3×256 + 14×16 + 0×1 + 10×0,0625 = 992,625

Exemplos para obter um número hexadecimal de um número decimal:

Divide-se o número decimal por 16. 
           
          85|_16
        - 80   5,3125  Pode-se perceber que contém vírgula nesta divisão,porém, utilizaremos 
          --           apenas o quociente (5) e resto da divisão antes da vírgula (5), 
          050          Não esquecendo de colocar o quociente primeiro e depois o resto.
         - 48          Decimal 85 = 55(hex)
           --
           020         79|_16       O número 79 também contêm vírgula. Pegamos 4  
          - 16       - 64   4,9375  e 15 que é igual a F.
            --         --           Decimal 79 = 4F(hex) 
            040        15
           - 32        .
             --        .
             080
            - 80
              --
               0

Adição Hexadecimal[editar | editar código-fonte]

É possível realizar adições diretamente com números hexadecimais. Basta lembrar que os dígitos 0-9 equivalem aos mesmos em decimal, e que os dígitos a-f equivalem aos decimais 10-15. Assim como na soma de decimais, devemos começar pela direita. 1- Realize a soma por colunas, e pense nos valores decimais dos dígitos. 2- Se a soma dos dígitos for menor que 15(em decimal), registre o valor(em hexadecimal). 3- Se a soma dos dígitos for maior que 15, subtraia 16 do resultado, registre o numero hexadecimal e gere um carry na próxima coluna.

Exemplo:

DF+AC

F+C= 15+12= 27

27-16=11=B

D+A+1(carry)=13+10+1=24

24-16=8 com carry de 1. Então: DF+AC= 18B

Tabela de conversão entre hexadecimal, decimal, octal e binário[editar | editar código-fonte]

0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

Fracções[editar | editar código-fonte]

As fracções, no seu desenvolvimento hexadecimal, não são exactas a menos que o denominador seja potência de 2. Contudo, os períodos não costumam ser muito complicados.

1/2 = 0,8
1/3 = 0,55...
1/4 = 0,4
1/5 = 0,33...
1/6 = 0,2AA...
1/7 = 0,249249...
1/8 = 0,2
1/9 = 0,1C1C...
1/A = 0,199...
1/B = 0,1745D1745D...
1/C = 0,155...
1/D = 0,13B13B...
1/E = 0,1249249...
1/F = 0,11...

Tabela de multiplicação[editar | editar código-fonte]

  1 2 3 4 5 6 7 8 9 A B C D E F 10
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E 20
3 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D 30
4 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40
5 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 50
6 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 60
7 7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 70
8 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80
9 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 90
A A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A0
B B 16 21 2C 37 42 4E 58 63 6E 79 84 8F 9A A5 B0
C C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C0
D D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D0
E E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 E0
F F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0
10 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 100

Referências

  • FLOYD, Thomas L. Sistemas digitais: fundamentos e aplicações. Porto Alegre: Bookman, 2007. 888 p. + 2 CD-ROMs ISBN 9788560031931.

Ver também[editar | editar código-fonte]

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.