Sophus Lie

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Sophus Lie
Matemática
Nacionalidade Noruega Norueguês
Nascimento 17 de dezembro de 1842
Local Nordfjordeid
Morte 18 de fevereiro de 1899 (56 anos)
Local Oslo
Atividade
Campo(s) Matemática
Instituições Universidade de Oslo, Universidade de Leipzig
Alma mater Universidade de Oslo
Tese 1872: On a Class of Geometric Transformations
Orientador(es) Carl Anton Bjerknes e Cato Maximilian Guldberg
Orientado(s) Hans Blichfeldt, Lucjan Emil Böttcher, Charles Leonard Bouton, Élie Cartan, Elling Holst, Gerhard Kowalewski, Gottlob Friedrich Lipps, Edgar Odell Lovett, Georg Scheffers, Kazimierz Żorawski
Conhecido(a) por Álgebra de Lie, grupo de Lie
Prêmio(s) Medalha Lobachevsky (1897)

Marius Sophus Lie (Nordfjordeid, 17 de dezembro de 1842Oslo, 18 de fevereiro de 1899) foi um matemático norueguês.

Vida[editar | editar código-fonte]

Quando estudante em Christiania (depois Kristiania e atualmente Oslo) teve o primeiro contato com a teoria dos grupos com Ludwig Sylow. Formou-se em matemática em 1865 Sua primeira publicação é de 1869, devido à qual obteve uma bolsa de estudos que o conduziu a Göttingen e Berlim. Conheceu então Felix Klein, com quem viajou para Paris em 1870, escrevendo com o mesmo artigos sobre grupos de transformações. Em 1872 tornou-se professor em Christiania, sendo em 1886 sucessor de Felix Klein na Universidade de Leipzig. Lie tinha tendências depressivas, saudades da Noruega e sofreu um colapso mental em 1889. Lie retornou à Noruega em 1898 para assumir uma cátedra especialmente criada para ele.

Trabalho[editar | editar código-fonte]

Lie estabeleceu a teoria das simetrias contínuas e utilizou-a para investigar equações diferenciais e estruturas geométricas. Operações simétricas contínuas são por exemplo deslocamentos e rotações infinitesimais, ao contrário de operações simétricas discretas, como por exemplo espelhamentos.

Com base em seu trabalho foram desenvolvidos algorítmos para integração numérica de equações diferenciais.

A fim de investigar a aplicação de grupos de transformações contínuas, atualmente denominados grupos de Lie, ele linearizou as transformações e investigou os diferenciais resultantes. As propriedades de conexão dos grupos de Lie podem ser expressas mediante comutadores, cujo estudo é atualmente denominado álgebra de Lie.

Bibliografia[editar | editar código-fonte]

  • Arild Stubhaug: Es war die Kühnheit meiner Gedanken. Der Mathematiker Sophus Lie. Berlim : Springer, 2003. ISBN 3-540-43657-X

Ligações externas[editar | editar código-fonte]