Vorticidade

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
A figura mostra como se conserva a vorticidade se não há viscosidade: se inicialmente era nula, qualquer variação encontra em algum lado sua variação oposta.

A vorticidade é uma grandeza física empregada em mecânica de fluidos e no mundo meteorológico para quantificar a rotação de um fluido.

Introdução: o campo de vorticidade[editar | editar código-fonte]

Matematicamente a vorticidade é o campo vetorial definido pelo rotacional do campo de movimento:


\boldsymbol{\omega} = \boldsymbol{\nabla} \times \mathbf{v}
[1]

A origem da vorticidade e sua importância[editar | editar código-fonte]

A presença de vorticidade em um fluido sempre implica a rotação das partículas fluidas, acompanhada ou não de alguma deformação transversal. Em um fluido real sua existência está intimamente ligada às tensões tangenciais.

A equação que permite estudar a cinética deste campo (chamada equação de transporte de vorticidade) se obtém tomando o rotacional a ambos os lados da equação de Navier-Stokes e expressando a derivada local em termos da derivada substancial.

 {D\boldsymbol{\omega} \over Dt} =
\boldsymbol{\omega} \cdot \boldsymbol\nabla u + \nu \nabla^2 \boldsymbol{\omega}
[2]

A vorticidade se origina fundamentalmente nos contornos sólidos devido a que os fluidos não são capazes de deslizar sobre eles, e logo se propaga ao interior do fluido seguindo a lei de variação descripta pela Equação 2. O primeiro termo corresponde à variação de vorticidade por deformação das linhas dos deslocamentos do vórtice. Este fenômeno ocorre tanto em fluidos viscosos como não viscosos, entretanto embargo é um fato notável que quando o fluido é não viscoso (ideal) esta é a única forma na qual a vorticidade pode variar. Tal como demonstrou William Thomson (Lorde Kelvin) em um de seus teoremas, esta variação ocorre sempre de maneira que o fluxo de vorticidade associado a uma superfície aberta que se move com o fluido permanece constante, o qual também implica que a variação da circulação Γ da velocidade ao longo do contorno dessa mesma superfície seja nula:

 \frac{\mathrm{d}\Gamma}{\mathrm{d}t} = 0 [3]

Para encontrar-se uma explicação simples a este mecanismo de variação de vorticidade imaginemos que no interior de um fluido não viscoso se tenha formado de alguma maneira uma região de vórtice em forma de tubo com seção variável em sua longitude. Como dentro dele não existe difusão viscosa o fluxo de vorticidade associado a qualquer superfície transversal é idêntico e constante, portanto ao variar-se a seção deve haver uma variação na intensidade da vorticidade.

O segundo termo da Equação 2, que o diferencia do primeiro só é avaliável em fluidos viscosos, corresponde à variação de vorticidade por difusão viscosa e tem analogia (similar a uma equação diferencial) com o fenômeno de condução de calor em sólidos. Devido a este fenômeno, partículas que não tem vorticidade a adquirem de partículas vizinhas que a tenham, produzindo-se uma difusão de vorticidade até o interior do fluido.

Um exemplo simples que evidencia este fenômeno é o de um recipiente cilíndrico cheio de fluido que parte do repouso e de repente começa a girar sobre seu eixo a uma velocidade angular constante. Qualquer pessoa pode intuir que o fluido que originalmente permanecia imóvel começará a girar junto com o recipiente. Primeiro o fará no contorno, mas ao fim de um determinado tempo todo o fluido se encontrará rotando como se fosse uma massa sólida dentro do recipiente. O que ocorre no primeiro instante do experimento é justamente uma geração de vorticidade devido à aparição de um gradiente de velocidade transversal. Ou seja: de repente as partículas do contorno se acham girando com o recipiente devido a sua aderência, enquanto suas vizinhas ainda permanecem imóveis. O que ocorre a continuação é uma progressiva difusão viscosa que perdura até alcançar o estado de regime; quando todo o fluido alcança a mesma velocidade angular e portanto a distribuição de vorticidade é constante.

Se repetirmos exatamente o mesmo experimento mas com fluidos menos viscosos notaríamos um tempo de transição mais longo, enquanto que para fluidos mais viscosos tempos mais curtos; o que é um indicador de que a viscosidade está relacionada com a velocidade de difusão de vorticidade. Este mesmo mecanismo de geração de vorticidade é o responsável da geração das camadas circundantes ao redor dos corpos sólidos. O processo de formação destas regiões é similar, ainda que nelas se pode encontrar gradientes de pressões que modificam seu desenvolvimento.

O exemplo anterior deixa como primeiro conceito que a viscosidade é a capacidade que tem as partículas para contagiar sua vorticidade e que dependendo dela o fluido estará em maior ou menor medida dominado pela vorticidade. Entretanto o campo de movimento de um fluido também está caracterizado por outros fatores: a escala do sistema (seu comprimento característico), sua velocidade característica, e sua densidade. O efeito de escala é um indicador de que o tamanho de um corpo é um dos parâmetros determinantes do campo de movimento. Se pode-se dispor dos dois modelos de um mesmo contorno sólido, mas de diferente escala, e se faz circular através deles um mesmo fluido à mesma velocidade, a vorticidade não terá porque difundir-se igualmente em ambos os casos, pelo que a forma e/ou intensidade das regiões vorticosas não serão necessariamente idênticas. Se pretende-se ter movimentos similares se deverá fazer circular pelo corpo maior um fluido menos denso, ou a menor velocidade, o de maior viscosidade.

Um exemplo simples sobre o efeito de escala é a circulação de fluido tangente a um plano sólido, onde se conclui que o desenvolvimento da camada circundante depende do comprimento. A densidade, por seu lado, é um fator que intervém dinamicamente, porque ao variar a massa de uma partícula fluida varia sua resposta ante as ações que se exercem sobre ela. Desde este ponto de vista mais amplo é evidente que o nível de difusão de vorticidade está estreitamente ligado ao número de Reynolds do fluido.

Com uma expressão matemática muito simples o número de Reynolds permite distinguir e comparar o movimento dos fluidos. Isto se deve a que reúne as características fundamentais do movimento: a escala de espaço e tempo, a massa e as ações internas. Em termos gerais se pode dizer que quando este número diminui os fenômenos associados à viscosidade ganham preponderância, e portanto se pode esperar regiões vorticosas mais extensas. Pelo contrário, quando se incrementa, os fenômenos viscosos se debilitam em relação aos não viscosos, e portanto é de se esperar regiões vorticosas mais compactas.

A vorticidade em fluidos não viscosos[editar | editar código-fonte]

Nos fluidos ideais (não viscosos e incompressíveis) a vorticidade adquire fundamental importância. Apesar de que neles a ausência de viscocidade impede a difusão de vorticidade, é possível encontrar regiões singulares extremamente compactas onde a vorticidade é infinitamente intensa. Exemplos destas regiões são os vórtices e as lâminas vorticosas. Estas regiones singulares são empregadas em numerosos estudos de aerodinâmica, como por exemplo o dos perfis alares Zhukovsky, e o método de Prandtl–Glauert.

A vorticidade e o campo de movimento[editar | editar código-fonte]

Para fluidos estritamente incompressíveis, sendo viscosos ou não viscosos, existe uma relação muito estreita entre a vorticidade e o campo de movimento definida pela equação integral de Tompson-Wu. Esta relação tem um grande valor já que permite avaliar o campo de movimento a partir do campo de vorticidade, que é nulo na maior parte do domínio.

A equação de Tomson-Wu aplicada a segmentos de vórtice em fluidos não viscosos adquire a forma da equação de Biot e Savart (lei de Biot–Savart).

Estas duas equações são empregadas em diversos métodos aerodinâmicos como por exemplo o "método inestacionário da rede de vórtices".

A vorticidade na meteorologia[editar | editar código-fonte]

Em meteorologia se trata de vorticidade para indicar a rotação do ar atmosférico. Se diz que a vorticidade é ciclônica (ou positiva) quando tem sentido anti-horário, e anticiclônica (ou negativa) quando tem sentido horário (o qual se verifica no hemisfério norte).

A vorticidade é um campo muito útil para o prognóstico do tempo pois está associada à produção de nebulosidade: os campos de vorticidade positiva são nebulosos enquanto que os de vorticidade negativa estão associados a céus limpos. Isto se deve a que a vorticidade positiva está associada com zonas de baixa pressão enquanto que a negativa com zonas de alta pressão. Por regra geral, a alta pressão produz divergência do ar e céus limpos, enquanto que a baixa pressão produz convergência e ascensão do ar o que resulta em nebulosidade.

Referêncais[editar | editar código-fonte]

Ver também[editar | editar código-fonte]