Alossauro

Origem: Wikipédia, a enciclopédia livre.
Como ler uma infocaixa de taxonomiaAlossauro
Ocorrência: Jurássico Superior
155–150 Ma
Réplica de esqueleto de Allosaurus do Museu de História Natural de San Diego
Réplica de esqueleto de Allosaurus do Museu de História Natural de San Diego
Classificação científica
Reino: Animalia
Filo: Chordata
Clado: Dinosauria
Ordem: Saurischia
Subordem: Theropoda
Família: Allosauridae
Género: Allosaurus
Marsh, 1877
Espécie-tipo
Allosaurus fragillis
Marsh, 1877, 2020
Outras espécies [1]
  • A. europaeus
    Mateus et al., 2006
  • A. jimmadseni
    Chure & Loewen, 2020
Sinónimos

O Alossauro (Allosaurus, que significa "lagarto diferente") foi um genero de dinossauro teropode, pertencente à família Allosauridae que viveu no fim do período Jurássico em na America do Norte e na Europa. Seu gênero foi descrito em 1877 pelo Paleontólogo Othniel Charles Marsh, sendo um dos primeiros um primeiros dinossauros teropodes conhecidos.

Provavelmente o Alossauro foi um dos maiores dinossauros carnívoros do período Jurássico. Ele se destacava também não só pelo tamanho e pela mandíbula cheia de dentes afiados (os maiores tendo 7,5 centímetros), mas também pelas duas cristas sólidas na cabeça, cada uma acima e na frente de cada olho, que talvez fosse o traço distintivo do gênero.

Como o predador mais abundante da Formação Morrison, o Allosaurus estava no topo da cadeia alimentar na maioria dos casos, dentre suas presas, estavam alguns dos dinossauros herbivoros da epoca como ornitópodes como o Driossauro, estegossaurídeos como o Estegossauro. Eles provavelmente não poderiam abater grandes saurópodes adultos e saudáveis sozinho, como o Diplodoco e o Apatossauro, embora pudesse ter tido chances com sauropodes jovens.[2] No entanto, sabemos que há marcas mordida de um Alossauro em uma cauda de Apatossauro.

Descrição[editar | editar código-fonte]

Comparação de tamanho entre um humano com as espécies de Alossauro.

O alossauro era um terópode típico, com uma cauda longa e ligeiramente inclinada e membros dianteiros reduzidos. Sobre seu tamanho existem diversas estimativas por causa da quantidade de especimes, o Allosaurus fragilis, que é espécie tipo da espécie, tinha 8,5 metros de comprimento na media,[3] ja o maior espécime de Allosaurus foi estimado em 9,7 metros de comprimento e 2,3 toneladas de peso.[4] As estimativas de peso do alossauro também variam bastante pelo mesmo motivo, desde 1980, as estimativas variam entre 1,5 toneladas, 1 a 4 tons e 1,01 toneladas para o um peso de um alossauro adulto casual.[5] John Foster, um especialista na Formação Morrison, sugere que uma tonelada é razoável para adultos grandes de A. fragilis, mas que 700 kg é uma estimativa mais próxima para indivíduos na media ele mediu.[6] Usando o espécime subadulto apelidado de "Big Al", que foi atribuído à espécie Allosaurus jimmadseni,[7] os pesquisadores chegaram a uma estimativa de 1,5 toneladas de peso para o indivíduo, mas por parâmetros variáveis ​​eles encontraram uma faixa de aproximadamente 1,4 toneladas a 2 toneladas de peso.[8]

Reconstrução de um Saurophaganax, um gênero relacionado ao Alossauro

Vários espécimes gigantescos e extrapolados foram atribuídos ao gênero Allosaurus, mas podem de fato pertencer a outros gêneros. Como um espécime de Saurophaganax (que é intimamente relacionado aos alossauros) poderia ter atingido 10,9 m de comprimento,[4] esse espécime foi atribuído ao gênero do alossauro como Allosaurus maximus, embora estudos recentes apoiem como um gênero separado. [9] Outro espécime potencial de alossauro foi uma vez atribuído ao gênero Epanterias, e poderia ter medido 12,1 metros de comprimento.[4] Ja em uma descoberta mais recente foi encontrado um esqueleto parcial nas rochas de Morrison, no Novo México; mas este grande alossaurídeo pode ser outro indivíduo de Saurophaganax.[6]

Variação de tamanho[editar | editar código-fonte]

Reconstrução de A. fragillis

A variação de tamanho entre espécimes de alossauro ja foi estudada, David K. Smith, examinando fósseis de alossauros, descobriu que os espécimes de Dinosaur Quarry em Utah são geralmente menores do que os de Como Bluff em Wyoming ou da pedreira de Dry Mesa da Universidade Brigham Young no Colorado, mas as formas dos próprios ossos não variaram entre os locais.[10] Um estudo posterior de Smith incorporando espécimes do Garden Park no Colorado e do Dinosaur National Monument em Utah não encontrou nenhuma justificativa para várias espécies com base na variação do esqueleto; a variação do crânio era mais comum e gradativa, assim sugerindo que a variação individual era a responsável.[11] Trabalhos posteriores sobre a variação de tamanho não encontraram diferenças consistentes, embora o material Dry Mesa tendesse a se agrupar com base no astrágalo.[12] Kenneth Carpenter, usando elementos de crânio do sítio Cleveland-Lloyd, encontrou ampla variação entre os indivíduos, questionando distinções em nível de espécie anteriores com base em características como a forma dos chifres e a diferenciação proposta de A. jimmadseni com base no conjugal. [13]

Espécies[editar | editar código-fonte]

Cranios das três espécies de alossauro, A. fragilis (A), A. jimmadseni (B), A. europeaus (C)

Seis espécies de Alossauro foram nomeadas: a espécie-tipo A. fragilis, A. jimmadseni, A. europaeus, A. amplus,[14] A. atrox[15] e A. lucasi. Entre estes, Daniel Chure e Mark Loewen em 2020 reconheceram apenas as espécies A. fragilis, A. europaeus e o recém-nomeado A. jimmadseni como sendo espécies válidas.[7]

A. fragilis é a espécie-tipo e foi nomeado por Marsh em 1877.[16] É conhecida pelos restos de pelo menos 60 indivíduos, todos encontrados na Formação Morrison do Jurássico Superior Kimmeridgian -Tithonian dos Estados unidos, espalhados pelos estados do Colorado, Montana, Novo México, Oklahoma, Dakota do Sul, Utah, e Wyoming. Detalhes do Úmero (braço superior) de A. fragilis têm sido usado como diagnóstico entre os terópodes de Morrison, mas A. jimmadseni indica que este não é mais o caso no nível da espécie.[1]

Esqueleto do especime de A. jimmadseni apelidado de "Big Al"

A. jimmadseni foi descrito com base em dois esqueletos quase completos. O primeiro espécime foi descoberto no Monumento Nacional dos Dinossauros no nordeste de Utah, com o indivíduo apelidado de "Big Al" reconhecido como pertencente à mesma espécie. [7][1][17][18] Esta espécie se difere de A. fragilis mostrado anteriormente em vários detalhes anatômicos, incluindo conjugal com margem inferior reta e um crânio mais alongado.

A. europaeus foi relatado pela primeira vez em 1999 em Porto Novo Member na Formação Lourinhã com base em um esqueleto parcial que incluía um quadrato, vértebras, costelas, gastralia, divisas, parte dos quadris e membros posteriores. Este espécime foi atribuído a A. fragilis inicialmente [19] mas a subsequente descoberta de uma parte do crânio e pescoço estimulou a denominação da nova espécie A. europaeus de Octávio Mateus e colegas. A espécie surgiu mais cedo no Jurássico do que a especie tipo e difere de outras espécies de Allosaurus em detalhes cranianos.[20] No entanto, mais material pode mostrar que é A. fragilis, conforme descrito originalmente.[21]

Descoberta e História[editar | editar código-fonte]

Descobertas iniciais e pesquisas[editar | editar código-fonte]

A descoberta e o estudo inicial do Allosaurus são complicados pela multiplicidade de nomes cunhados durante a Guerra dos Ossos no final do século XIX. O primeiro fóssil descrito nesta história foi um osso obtido de segunda mão por Ferdinand Vandeveer Hayden em 1869. Ele veio de Middle Park, perto de Granby, Colorado, provavelmente de rochas da Formação Morrison. Os habitantes locais identificaram esses ossos como "cascos de cavalo petrificados". Hayden enviou seu espécime a Joseph Leidy, que o identificou como a metade de uma vértebra da cauda e, provisoriamente, atribuiu-o ao gênero de dinossauro europeu Poekilopleuron como Poicilopleuron valens.[22] Mais tarde, ele decidiu que merecia seu próprio gênero, Antrodemus.[23]

O próprio Allosaurus é baseado no YPM 1930, uma pequena coleção de ossos fragmentados incluindo partes de três vértebras, um fragmento de costela, um dente, um osso do dedo do pé e, mais útil para discussões posteriores, a haste do úmero direito (braço). Othniel Charles Marsh deu a esses restos o nome formal Allosaurus fragilis em 1877. Allosaurus vem do grego allos/αλλος, que significa "estranho" ou "diferente" e sauros/ σαυρος, que significa "lagarto" ou "réptil".[24] Foi chamado de 'lagarto diferente' porque suas vértebras eram diferentes das de outros dinossauros conhecidos na época de sua descoberta.[25][26] O epíteto da espécie fragilis em latim significa "frágil", referindo-se a feições iluminadas nas vértebras. Os ossos foram coletados na Formação Morrison de Garden Park, ao norte da cidade de Cañon.[25] Marsh e Edward Drinker Cope, que estavam em competição científica entre si, cunharam vários outros gêneros baseados em material igualmente esparso que mais tarde figuraria na taxonomia do Allosaurus. Isso inclui o Creosaurus de Marsh[27] E Labrosaurus,[28] e Epanterias de Cope.[29]

Espécime (AMNH 5753) de A. fragilis montado, em pose de devorar os restos de um Apatossauro
AMNH 5753 em uma restauração de vida de Charles R. Knight

Em sua pressa, Cope e Marsh nem sempre acompanhavam suas descobertas (ou, mais comumente, aquelas feitas por seus subordinados). Por exemplo, após a descoberta por Benjamin Mudge do espécime-tipo de Allosaurus no Colorado, Marsh decidiu concentrar o trabalho em Wyoming; quando o trabalho foi retomado em Garden Park em 1883, M. P. Felch encontrou um Allosaurus quase completo e vários esqueletos parciais.[30] Além disso, um dos colecionadores de Cope, H. F. Hubbell, encontrou um espécime na área de Como Bluff, em Wyoming, em 1879, mas aparentemente não mencionou sua integridade e Cope nunca o desempacotou. Após a descompactação em 1903 (vários anos após a morte de Cope), descobriu-se que era um dos espécimes de terópodes mais completos conhecidos, e em 1908 o esqueleto, agora catalogado como AMNH 5753, foi colocado à vista do público.[31] Esta é a conhecida montagem pairando sobre um esqueleto parcial de Apatossauro como se o estivesse devorando seus restos, ilustrado como tal por Charles R. Knight. Embora notável como a primeira montagem independente de um dinossauro terópode, e muitas vezes ilustrado e fotografado, ele nunca foi descrito cientificamente.[32]

A multiplicidade de nomes antigos complicou as pesquisas posteriores, com a situação agravada pelas descrições concisas fornecidas por Marsh e Cope. Mesmo na época, autores como Samuel Wendell Williston sugeriram que muitos nomes haviam sido cunhados.[33] Por exemplo, Williston apontou em 1901 que Marsh nunca foi capaz de distinguir adequadamente o Allosaurus do Creosaurus.[34] A tentativa inicial mais influente de resolver a situação complicada foi produzida por Charles W. Gilmore em 1920. Ele chegou à conclusão de que a vértebra da cauda chamada Antrodemus por Leidy era indistinguível das de Allosaurus, e Antrodemus, portanto, deveria ser o nome preferido porque , como o nome mais antigo, tinha prioridade.[35] Antrodemus se tornou o nome aceito para este gênero familiar por mais de 50 anos, até que James Madsen publicou estudos sobre os espécimes de Cleveland-Lloyd e concluiu que Allosaurus deveria ser usado porque Antrodemus foi baseado em material com pobres características de diagnóstico (isso se havia) e informações de localidade (para exemplo, a formação geológica de onde veio o único osso de Antrodemus é desconhecida).[36] "Antrodemus" foi usado informalmente por conveniência ao distinguir entre o crânio restaurado por Gilmore e o crânio composto restaurado por Madsen.[37]

Descobertas de Cleveland-Lloyd[editar | editar código-fonte]

A. fragilis no museu Cleveland-Lloyd Dinosaur Quarry em Utah

Embora o trabalho esporádico no que ficou conhecido como Cleveland-Lloyd Dinosaur Quarry no Condado de Emery, Utah tivesse ocorrido já em 1927, e o próprio local do fóssil descrito por William L. Stokes em 1945,[38] as principais operações não começaram lá até 1960. Sob um esforço cooperativo envolvendo cerca de 40 instituições, milhares de ossos foram recuperados entre 1960 e 1965.[36] A pedreira é notável pela predominância de restos de Allosaurus, a condição dos espécimes e a falta de resolução científica sobre como ela surgiu. A maioria dos ossos pertence ao grande terópode Allosaurus fragilis (estima-se que os restos de pelo menos 46 A. fragilis foram encontrados lá, de um mínimo de 73 dinossauros), e os fósseis ali encontrados estão desarticulados e bem misturados . Quase uma dúzia de artigos científicos foram escritos sobre a tafonomia do site, sugerindo inúmeras explicações mutuamente exclusivas de como ele pode ter se formado. As sugestões vão desde animais presos em um pântano, a ficarem presos em lama profunda, a serem vítimas de mortalidade induzida pela seca em torno de um poço de água, a ficarem presos em um lago alimentado por nascentes ou infiltração.[20] Independentemente da causa real, a grande quantidade de vestígios de alossauros bem preservados permitiu que esse gênero fosse conhecido em detalhes, colocando-o entre os terópodes mais conhecidos. Restos de esqueletos da pedreira pertencem a indivíduos de quase todas as idades e tamanhos, de menos de 1 metro[39] a 12 metros de comprimento, e a desarticulação é uma vantagem para descrever ossos geralmente encontrados fundidos.[36] Devido a ser uma das duas pedreiras de fósseis de Utah onde muitos espécimes de Allosaurus foram descobertos, o dinossauro acabou designado como o fóssil de estado para Utah em 1988.[40]

Trabalhos Recentes:1980-presente[editar | editar código-fonte]

O período desde a monografia de Madsen foi marcado por uma grande expansão nos estudos que tratam de tópicos relacionados ao Alossauro em vida (tópicos paleobiológicos e paleoecológicos). Esses estudos cobriram tópicos, incluindo variação esquelética, [41] crescimento,[42][43], construção do crânio,[44] métodos de caça,[45] o cérebro,[46] e a possibilidade de uma vida gregária e cuidado dos pais.[47] Reanálise de material antigo (particularmente de grandes espécimes de alossauros),[48][49] novas descobertas em Portugal,[50] e vários novos espécimes muito completos[51][52][53] também contribuíram para a formação de um crescente conhecimento básico sobre o Alossauro.

Big Al e Big All 2[editar | editar código-fonte]

"Big Al" no Museu das Montanhas Rochosas, em Montana

Em 1991, "Big Al" (MOR 693), um espécime de Allosaurus parcialmente articulado e 95% completo foi descoberto. Mediu cerca de 8 metros de comprimento. MOR 693 foi escavado perto de Shell, Wyoming, por uma equipe conjunta do Museu das Montanhas Rochosas e do Museu Geológico da Universidade de Wyoming.[54] Este esqueleto foi descoberto por uma equipe suíça, liderada por Kirby Siber. Chure e Loewen em 2020 identificaram o indivíduo como representante da espécie Allosaurus jimmadseni. Em 1996, a mesma equipe descobriu um segundo Allosaurus, "Big Al 2". Este espécime, o esqueleto mais bem preservado de seu tipo até hoje, também é conhecido como Allosaurus jimmadseni.[55]

A integridade, preservação e importância científica desse esqueleto deram a "Big Al" seu nome; o próprio indivíduo estava abaixo do tamanho médio para Allosaurus fragilis,[54] e era um subadulto estimado em apenas 87% de crescimento.[56] O espécime foi descrito por Breithaupt em 1996.[52] Dezenove de seus ossos foram quebrados ou mostraram sinais de infecção, o que pode ter contribuído para a morte de "Big Al". Ossos patológicos incluíram cinco costelas, cinco vértebras e quatro ossos dos pés; vários ossos danificados mostraram osteomielite, uma infecção óssea. Um problema específico para o animal vivo era a infecção e o trauma no pé direito que provavelmente afetava o movimento e também pode ter predisposto o outro pé a lesões devido a uma mudança na marcha. Al teve uma infecção na primeira falange do terceiro dedo do pé, afetada por um invólucro. A infecção durou muito tempo, talvez até seis meses.[56] "Big Al 2" também é conhecido por ter lesões múltiplas. [57]

Paleobiologia[editar | editar código-fonte]

Esqueletos em diferentes estágios de crescimento em exibição no Museu de História Natural de Utah

Tempo de vida[editar | editar código-fonte]

A riqueza de fósseis de alossauros, de quase todas as idades dos indivíduos, permite aos cientistas estudar como o animal cresceu e quanto tempo sua vida pode ter sido. Os restos mortais podem chegar tão longe na vida quanto os ovos - sugeriu-se que ovos esmagados encontrados no Colorado são de alossauro.[3] Com base na análise histológica dos ossos dos membros, a deposição óssea parece parar por volta dos 22 a 28 anos, o que é comparável ao de outros grandes terópodes como o tiranossauro. Pela mesma análise, seu crescimento máximo parece ter sido aos 15 anos, com uma taxa de crescimento estimada de cerca de 150 quilos por ano.[42]

Restauração de um Allosaurus juvenil

Tecido ósseo medular (derivado endostealmente, efêmero, mineralização localizado dentro da medula dos ossos longos em aves fêmeas grávidas) foi relatado em pelo menos um espécime de Allosaurus, um osso da tíbia da pedreira Cleveland-Lloyd.[58] Hoje, esse tecido ósseo só se forma em aves fêmeas que põem ovos, pois é usado para fornecer cálcio às cascas. Sua presença em um exemplar de alossauro tem sido usada para estabelecer o sexo e mostrar que a mesma atingiu a idade reprodutiva. No entanto, outros estudos questionaram alguns casos de osso medular em dinossauros, incluindo este alossauro em particular. Dados de pássaros existentes sugeriram que o osso medular deste exemplar pode ter sido o resultado de uma patologia óssea em vez disso.[59] No entanto, com a confirmação de tecido medular indicando sexo em um espécime de tiranossauro, pode ser possível determinar se o alossauro em questão era ou não realmente uma fêmea.[60]

A descoberta de um espécime jovem com um membro posterior quase completo mostra que as pernas eram relativamente mais longas nos jovens, e os segmentos inferiores da perna (canela e pé) eram relativamente mais longos do que a coxa. Essas diferenças sugerem que os alossauros mais jovens eram mais rápidos e tinham estratégias de caça diferentes dos adultos, talvez perseguindo pequenas presas quando jovens, tornando-se caçadores de emboscada de grandes presas na idade adulta.[43] O osso da coxa tornou-se mais espesso e largo durante o crescimento, e a seção transversal menos circular, conforme as ligações dos músculos mudaram, os músculos tornaram-se mais curtos e o crescimento da perna diminuiu. Essas mudanças implicam que as pernas juvenis têm estresses menos previsíveis em comparação com os adultos, que teriam se movido com uma progressão mais regular para frente.[61] Por outro lado, os ossos do crânio parecem geralmente ter crescido isometricamente, aumentando de tamanho sem mudar em proporção.[62]

Alimentação[editar | editar código-fonte]

Esqueletos de um Alossauro e de um Estegossauro.

O Alossauro é considerado um predador ativo de grandes animais. Há evidências de ataques de alossauro ao Estegossauro, incluindo uma vértebra caudal do Alossauro com uma ferida parcialmente cicatrizada que se encaixa num espigão caudal do Estegossauro, e uma placa do pescoço de estegossauro com uma ferida em forma de U que se correlaciona bem com um focinho do Alossauro.[63] Os saurópodes parecem ser provavelmente candidatos tanto como presas vivas quanto como objeto de necrofagia, com base na presença de raspas nos ossos de saurópodes encaixando bem nos dentes de alossauro e a presença de dentes de alossauro com ossos de saurópodes[64] embora fosse provável a preferência de saurópodes mais jovens ao invés de adultos.

Um Alossauro mostrando sua abertura da mandibula máxima, baseado em Bakker (1998) e Rayfield et al. (2001).

Comparando o Alossauro com mamíferos de dente de sabre do cenozoico, encontrou adaptações similares, tais como a redução dos músculos da mandíbula e aumento dos músculos do pescoço, e a capacidade de abrir as mandíbulas em larga escala. Embora o Alossauro não tivesse dentes de sabre, Bakker sugeriu outro modo de ataque que teria usado tais adaptações do pescoço e da mandíbula: os dentes curtos, na verdade, tornaram-se pequenas serrilhas em uma aresta de corte em forma de serra que percorria o comprimento da mandíbula superior, que teria sido levada à presa. Este tipo de mandíbula permitiria ataques de corte contra presas muito maiores, com o objetivo de enfraquecer a vítima.[65]

Um trabalho sobre a morfologia cranio-dentária do Alossauro e como ela funcionava o considerou improvável, reinterpretando a abertura anormalmente larga como uma adaptação para permitir que o Alossauro entregasse uma mordida direcionada a músculos de grandes presas, com os músculos mais fracos da mandíbula sendo uma adaptação para permitir a grande abertura.[66]

Comportamento social[editar | editar código-fonte]

O holótipo dentário do Labrosaurus ferox, que pode ter sido ferido pela mordida de outro A. fragilis

Especula-se desde a década de 1970 que o alossauro se alimentava de saurópodes e outros grandes dinossauros caçando em grupos.[67] Essa representação é comum na literatura popular e semitécnica de dinossauros.[30][68][69] Robert T. Bakker estendeu o comportamento social ao cuidado dos pais e interpretou a perda de dentes de alossauro e a mastigação de ossos de grandes presas como evidência de que alossauros adultos levavam comida às tocas para seus filhotes comerem até crescerem e evitou que outros carnívoros se alimentassem na comida.[47] No entanto, há realmente pouca evidência de comportamento gregário em terópodes,[70] e as interações sociais com membros da mesma espécie teriam incluído encontros antagônicos, como mostrado por lesões na gastralia[51] e mordidas em crânios (mandíbula patológica chamado Labrosaurus ferox é um exemplo possível). Tal mordida na cabeça pode ter sido uma forma de estabelecer domínio em um bando ou de resolver disputas territoriais.[71]

Embora o alossauro possa ter caçado em matilhas,[72] foi argumentado que o alossauro e outros terópodes tinham interações amplamente agressivas em vez de interações cooperativas com outros membros de sua própria espécie. O estudo em questão observou que a caça cooperativa de presas muito maiores do que um predador individual, como é comumente inferido para dinossauros terópodes, é rara entre os vertebrados em geral, e os carnívoros diapsídeos modernos (incluindo lagartos, crocodilos e pássaros) raramente cooperam para caçar em tal forma. Em vez disso, eles são tipicamente territoriais e matam e canibalizam intrusos da mesma espécie, e também fazem o mesmo com indivíduos menores que tentam comer antes de fazê-lo quando agregados em locais de alimentação. De acordo com essa interpretação, o acúmulo de restos mortais de vários indivíduos alossauros no mesmo local; por exemplo, na pedreira de Cleveland-Lloyd, não são devidos à caça em matilha, mas ao fato de que os indivíduos alossauros foram reunidos para se alimentar de outros alossauros deficientes ou mortos, e às vezes foram mortos no processo. Isso poderia explicar a alta proporção de alossauros juvenis e subadultos presentes, já que juvenis e subadultos são desproporcionalmente mortos em locais de alimentação de grupos modernos de animais como crocodilos e dragões de Komodo. A mesma interpretação se aplica aos locais dos sítios de Bakker.[73] Há algumas evidências de canibalismo no Allosaurus, incluindo dentes caídos de alossauros encontrados entre fragmentos de costelas, possíveis marcas de dentes em uma omoplata,[74] e esqueletos de alossauros canibalizados entre os ossos no sítio referido.[75]

Referências

  1. a b c Chure, Daniel J.; Loewen, Mark A. (24 de janeiro de 2020). «Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America». PeerJ (em inglês): e7803. ISSN 2167-8359. doi:10.7717/peerj.7803. Consultado em 20 de abril de 2021 
  2. Don, Donald F., Tracy, Peter, Lessem, Glut, Ford, Dodson (1993). A enciclopédia de dinossauros da Dinosaur Society. Nova York: Nova York: Random House. pp. 19–20 
  3. a b Glut, Donald F. (1997). "Allosaurus". Dinosaurs: The Encyclopedia. Jefferson, North Carolina: McFarland & Co. pp. 105–117. ISBN 978-0-89950-917-4
  4. a b c Mortimer, Mickey (21 July 2003). "And the largest Theropod is..." The Dinosaur Mailing List. Archived from the original on 25 March 2010. Retrieved 8 September 2007.
  5. Foster, John R. (2003). Paleoecological Analysis of the Vertebrate Fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain Region, U.S.A. New Mexico Museum of Natural History and Science Bulletin 23. Albuquerque: New Mexico Museum of Natural History and Science. p. 37.
  6. a b Foster, John (2007). "Allosaurus fragilis". Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Bloomington, Indiana: Indiana University Press. pp. 170–176. ISBN 978-0-253-34870-8. OCLC 77830875.
  7. a b c Chure, D.J.; Loewen, M.A. (2020). "Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America". PeerJ. 8: e7803. doi:10.7717/peerj.7803. PMC 6984342. PMID 32002317.
  8. Bates, Karl T.; Falkingham, Peter L.; Breithaupt, Brent H.; Hodgetts, David; Sellers, William I.; Manning, Phillip L. (2009). "How big was 'Big Al'? Quantifying the effect of soft tissue and osteological unknowns on mass predictions for Allosaurus (Dinosauria:Theropoda)". Palaeontologia Electronica. 12 (3): unpaginated. Archived from the original on 25 December 2009. Retrieved 13 December 2009.
  9. Chure, Daniel J. (2000). A new species of Allosaurus from the Morrison Formation of Dinosaur National Monument (Utah–Colorado) and a revision of the theropod family Allosauridae. PhD dissertation. Columbia University.
  10. Smith, David K. (1996). "A discriminant analysis of Allosauruspopulation using quarries as the operational units". Museum of Northern Arizona Bulletin. 60: 69–72.
  11. Smith, David K. (1998). "A morphometric analysis of Allosaurus". jornal of Vertebrate Paleontology. 18 (1): 126–142. doi:10.1080/02724634.1998.10011039.
  12. Smith, David K. (1999). "Patterns of size-related variation within Allosaurus". jornal of Vertebrate Paleontology. 19 (2): 402–403. doi:10.1080/02724634.1999.10011153.
  13. Carpenter, Kenneth (2010). "Variation in a population of Theropoda (Dinosauria): Allosaurus from the Cleveland-Lloyd Quarry (Upper Jurassic), Utah, USA". Paleontological Research. 14 (4): 250–259. doi:10.2517/1342-8144-14.4.250. S2CID 84635714.
  14. Galton, Peter M.; Carpenter, Kenneth; Dalman, Sebastian G. (1 de março de 2015). «The holotype pes of the Morrison dinosaur Camptonotus amplus Marsh, 1879 (Upper Jurassic, western USA) – is it Camptosaurus, Sauropoda or Allosaurus?». Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen (em inglês): 317–335. doi:10.1127/njgpa/2015/0467. Consultado em 20 de abril de 2021 
  15. Oser, Sara E.; Chure, Daniel J. (2016). «INSECT TRACES ON THE SURFACE OF DINOSAUR BONES FROM THE CARNEGIE QUARRY (CQ) IN THE UPPER JURASSIC MORRISON FORMATION AT DINOSAUR NATIONAL MONUMENT (DINO), JENSEN, UT». Geological Society of America. doi:10.1130/abs/2016am-288060. Consultado em 20 de abril de 2021 
  16. Marsh, O. C. (1 de dezembro de 1877). «Notice of new dinosaurian reptiles from the Jurassic formation». doi:10.2475/ajs.s3-14.84.514. Consultado em 20 de abril de 2021 
  17. Glut, Donald F. (2003). "Allosaurus". Dinosaurs: The Encyclopedia. 3rd Supplement. Jefferson, North Carolina: McFarland & Co. pp. 221–233. ISBN 978-0-7864-1166-5.
  18. "New species of Allosaurus discovered in Utah". phys.org.
  19. Pérez-Moreno, B.P.; Chure, D. J.; Pires, C.; Marques Da Silva, C.; Dos Santos, V.; Dantas, P.; Povoas, L.; Cachao, M.; Sanz, J. L. (1999). "On the presence of Allosaurus fragilis (Theropoda: Carnosauria) in the Upper Jurassic of Portugal: primeiro evidence of an intercontinental dinosaur species" (PDF). jornal of the Geological Society. 156 (3): 449–452. Bibcode:1999JGSoc.156..449P. doi:10.1144/gsjgs.156.3.0449. S2CID 130952546. Archived from the original (PDF) on 25 October 2007.
  20. a b Hunt, Adrian P; Lucas, Spencer G.; Krainer, Karl; Spielmann, Justin (2006). «The taphonomy of the Cleveland-Lloyd Dinosaur Quarry, Upper Jurassic Morrison Formation, Utah: a re-evaluation». In: Foster, John R.; Lucas, Spencer G. Paleontology and Geology of the Upper Jurassic Morrison Formation. Col: New Mexico Museum of Natural History and Science Bulletin, 36. Albuquerque, New Mexico: New Mexico Museum of Natural History and Science. pp. 57–65 
  21. Malafaia, Elisabete; Dantas, Pedro; Ortega, Francisco; Escaso, Fernando (2007). "Nuevos restos de Allosaurus fragilis (Theropoda: Carnosauria) del yacimiento de Andrés (Jurásico Superior; centro-oeste de Portugal)" [New remains of Allosaurus fragilis (Theropoda: Carnosauria) of the Andrés deposit (Upper Jurassic; central-west Portugal)] (PDF). Cantera Paleontológica (in Spanish and English): 255–271.
  22. Leidy, Joseph (1870). «Remarks on Poicilopleuron valens, Clidastes intermedius, Leiodon proriger, Baptemys wyomingensis, and Emys stevensonianus». Proceedings of the Academy of Natural Sciences of Philadelphia (em inglês). 22. pp. 3–4 
  23. Leidy, Joseph (1873). «Contribution to the extinct vertebrate fauna of the western territories». Report of the U.S. Geological Survey of the Territories I (em inglês). pp. 14–358 
  24. Liddell & Scott (1980). Greek–English Lexicon, Abridged Edition (em inglês). Oxford: Oxford University Press. ISBN 978-0-19-910207-5. OCLC 17396377 
  25. a b Marsh, Othniel Charles (1877). «Notice of new dinosaurian reptiles from the Jurassic formation». American jornal of Science and Arts (em inglês). 14 (84). pp. 514–516. Bibcode:1877AmJS...14..514M. doi:10.2475/ajs.s3-14.84.514 
  26. Creisler, Ben (7 de julho de 2003). «Dinosauria Translation and Pronunciation Guide A». Dinosauria On-Line. Consultado em 11 de setembro de 2007. Arquivado do original em 5 de janeiro de 2010 
  27. Marsh, Othniel Charles (1878). «Notice of new dinosaurian reptiles». American jornal of Science and Arts (em inglês). 15 (87). pp. 241–244. Bibcode:1878AmJS...15..241M. doi:10.2475/ajs.s3-15.87.241 
  28. Marsh, Othniel Charles (1879). «Principal characters of American Jurassic dinosaurs. Part II». American jornal of Science. Series 3 (em inglês). 17 (97). pp. 86–92. doi:10.2475/ajs.s3-17.97.86. hdl:2027/hvd.32044107172876 
  29. Cope, Edward Drinker (1878). «A new opisthocoelous dinosaur». American Naturalist (em inglês). 12 (6). pp. 406–408. doi:10.1086/272127 
  30. a b Norman, David B. (1985). «Carnosaurs». The Illustrated Encyclopedia of Dinosaurs: An Original and Compelling Insight into Life in the Dinosaur Kingdom (em inglês). Nova Iorque: Crescent livros. pp. 62–67. ISBN 978-0-517-46890-6 
  31. Norell, Mark A.; Gaffney, Eric S.; Dingus, Lowell (1995). Discovering Dinosaurs in the American Museum of Natural History (em inglês). Nova Iorque: Knopf. pp. 112–113. ISBN 978-0-679-43386-6 
  32. Breithaupt, Brent H. (1999). «AMNH 5753: The world's primeiro free-standing theropod skeleton». jornal of Vertebrate Paleontology (em inglês). 19 (3, Suppl). p. 33A. doi:10.1080/02724634.1999.10011202 
  33. Williston, Samuel Wendell (1878). «American Jurassic dinosaurs». Transactions of the Kansas Academy of Science. 6. pp. 42–46. JSTOR 3623553. doi:10.2307/3623553 
  34. Williston, Samuel Wendell (1901). «The dinosaurian genus Creosaurus, Marsh». American jornal of Science. Series 4. 11 (62). pp. 111–114. Bibcode:1901AmJS...11..111W. doi:10.2475/ajs.s4-11.62.111 
  35. Gilmore, Charles W. (1920). «Osteology of the carnivorous dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus» (PDF). Bulletin of the United States National Museum. 110 (110). pp. 1–159. doi:10.5479/si.03629236.110.i. hdl:2027/uiug.30112032536010 
  36. a b c Madsen, James H. Jr. (1993) [1976]. Allosaurus fragilis: A Revised Osteology. Col: Utah Geological Survey Bulletin 109 2nd ed. Salt Lake City: Utah Geological Survey 
  37. Henderson, Donald M. (1998). «Skull and tooth morphology as indicators of niche partitioning in sympatric Morrison Formation theropods». Gaia. 15. pp. 219–266 
  38. Stokes, William L. (1945). «A new quarry for Jurassic dinosaurs». Science (em inglês). 101 (2614). pp. 115–117. Bibcode:1945Sci...101..115S. PMID 17799203. doi:10.1126/science.101.2614.115-a 
  39. Loewen, Mark A.; Sampson, Scott D.; Carrano, Matthew T.; Chure, Daniel J. (2003). «Morphology, taxonomy, and stratigraphy of Allosaurus from the Upper Jurassic Morrison Formation». jornal of Vertebrate Paleontology (em inglês). 23 (3). p. 72A. doi:10.1080/02724634.2003.10010538 
  40. «Utah Symbols – State Fossil». Pioneer: Utah's Online Library, State of Utah. Consultado em 16 de junho de 2010. Cópia arquivada em 17 de janeiro de 2010 
  41. Smith, David K. (1998). «A morphometric analysis of Allosaurus». jornal of Vertebrate Paleontology. 18 (1). pp. 126–142. doi:10.1080/02724634.1998.10011039 
  42. a b Bybee, Paul J.; Lee, AH; Lamm, ET (2006). «Sizing the Jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs». jornal of Morphology (em inglês). 267 (3). pp. 347–359. PMID 16380967. doi:10.1002/jmor.10406 
  43. a b Foster, John R.; Chure, Daniel J. (2006). «Hindlimb allometry in the Late Jurassic theropod dinosaur Allosaurus, with comments on its abundance and distribution». In: Foster, John R.; Lucas, Spencer G. Paleontology and Geology of the Upper Jurassic Morrison Formation. Col: New Mexico Museum of Natural History and Science Bulletin, 36. Albuquerque, New Mexico: New Mexico Museum of Natural History and Science. pp. 119–122 
  44. Rayfield, Emily J.; Norman, DB; Horner, CC; Horner, JR; Smith, PM; Thomason, JJ; Upchurch, P (2001). «Cranial design and function in a large theropod dinosaur». Nature (em inglês). 409 (6823). pp. 1033–1037. Bibcode:2001Natur.409.1033R. PMID 11234010. doi:10.1038/35059070 
  45. Bakker, Robert T. (1998). «Brontosaur killers: Late Jurassic allosaurids as sabre-tooth cat analogues». Gaia. 15. pp. 145–158. ISSN 0871-5424 
  46. Rogers, Scott W. (1999). «Allosaurus, crocodiles, and birds: Evolutionary clues from spiral computed tomography of an endocast». The Anatomical Record (em inglês). 257 (5). pp. 163–173. PMID 10597341. doi:10.1002/(SICI)1097-0185(19991015)257:5<162::AID-AR5>3.0.CO;2-W 
  47. a b Bakker, Robert T. (1997). «Raptor Family values: Allosaur parents brought giant carcasses into their lair to feed their young». In: Wolberg, Donald L.; Sump, Edmund; Rosenberg, Gary D. Dinofest International, Proceedings of a Symposium Held at Arizona State University. Philadelphia: Academy of Natural Sciences. pp. 51–63. ISBN 978-0-935868-94-4 
  48. Paul, Gregory S. (1988). «Genus Allosaurus». Predatory Dinosaurs of the World. Nova Iorque: Simon & Schuster. pp. 307–313. ISBN 978-0-671-61946-6 
  49. Chure, Daniel J. (1995). «A reassessment of the gigantic theropod Saurophagus maximus from the Morrison Formation (Upper Jurassic) of Oklahoma, USA». In: Ailing Sun; Yuangqing Wang. Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers. Beijing: China Ocean Press. pp. 103–106. ISBN 978-7-5027-3898-3 
  50. Pérez-Moreno, B.P.; Chure, D. J.; Pires, C.; Marques Da Silva, C.; Dos Santos, V.; Dantas, P.; Povoas, L.; Cachao, M.; Sanz, J. L. (1999). «On the presence of Allosaurus fragilis (Theropoda: Carnosauria) in the Upper Jurassic of Portugal: primeiro evidence of an intercontinental dinosaur species» (PDF). jornal of the Geological Society (em inglês). 156 (3). pp. 449–452. Bibcode:1999JGSoc.156..449P. doi:10.1144/gsjgs.156.3.0449. Arquivado do original (PDF) em 25 de outubro de 2007 
  51. a b Chure, Daniel J. (2000). «Observations on the morphology and pathology of the gastral basket of Allosaurus, based on a new specimen from Dinosaur National Monument». Oryctos. 3. pp. 29–37. ISSN 1290-4805 
  52. a b Breithaupt, Brent (1996). «The discovery of a nearly complete Allosaurus from the Jurassic Morrison Formation, eastern Bighorn Basin, Wyoming». In: Brown, C.E.; Kirkwood, S.C.; Miller, T.S. Forty-Seventh Annual Field Conference Guidelivro. Casper, Wyoming: Wyoming Geological Association. pp. 309–313. OCLC 36004754 
  53. «Howe Dinosaur Quarry – Wyoming's Jurassic Treasure». GeoScience Adventures. 24 de junho de 2007. Consultado em 27 de setembro de 2007. Cópia arquivada em 3 de dezembro de 2007 
  54. a b Breithaupt, Brent H. «The case of "Big Al" the Allosaurus: a study in paleodetective partnerships» (em inglês). Consultado em 3 de outubro de 2007. Arquivado do original em 7 de janeiro de 2010 
  55. Chure, D.J.; Loewen, M.A. (2020). «Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America». PeerJ (em inglês). 8. p. e7803. PMC 6984342Acessível livremente. PMID 32002317. doi:10.7717/peerj.7803 
  56. a b Hanna, Rebecca R. (2002). «Multiple injury and infection in a sub-adult theropod dinosaur (Allosaurus fragilis) with comparisons to allosaur pathology in the Cleveland-Lloyd Dinosaur Quarry Collection». jornal of Vertebrate Paleontology (em inglês). 22 (1). pp. 76–90. ISSN 0272-4634. doi:10.1671/0272-4634(2002)022[0076:MIAIIA]2.0.CO;2 
  57. Foth, C.; Evers, S.; Pabst, B.; Mateus, O.; Flisch, A.; Patthey, M.; Rauhut, O. W. M. (2015). «New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies». PeerJ (em inglês). 3. p. e824v1. PMC 4435507Acessível livremente. PMID 26020001. doi:10.7717/peerj.940 
  58. Lee, Andrew H.; Werning, S (2008). «Sexual maturity in growing dinosaurs does not fit reptilian growth models». Proceedings of the National Academy of Sciences of the United States of America. 105 (2). pp. 582–587. Bibcode:2008PNAS..105..582L. PMC 2206579Acessível livremente. PMID 18195356. doi:10.1073/pnas.0708903105 
  59. Chinsamy, A.; Tumarkin-Deratzian, A. (2009). «Pathological Bone Tissues in a Turkey Vulture and a Nonavian Dinosaur: Implications for Interpreting Endosteal Bone and Radial Fibrolamellar Bone in Fossil Dinosaurs». Anat. Rec. (em inglês). 292 (9). pp. 1478–1484. PMID 19711479. doi:10.1002/ar.20991 
  60. «Pregnant T. rex could aid in dino sex-typing» (em inglês). Science Daily. 15 de fevereiro de 2016. Cópia arquivada em 14 de abril de 2016 
  61. Loewen, Mark A. (2002). «Ontogenetic changes in hindlimb musculature and function in the Late Jurassic theropod Allosaurus». jornal of Vertebrate Paleontology (em inglês). 22 (3, Suppl). p. 80A 
  62. Carpenter, Kenneth (2010). «Variation in a population of Theropoda (Dinosauria): Allosaurus from the Cleveland-Lloyd Quarry (Upper Jurassic), Utah, USA». Paleontological Research (em inglês). 14 (4). pp. 250–259. doi:10.2517/1342-8144-14.4.250 
  63. The carnivorous dinosaurs. Kenneth Carpenter. Bloomington: Indiana University Press. 2005. OCLC 56632419 
  64. Fastovsky, David E.; Smith, Joshua B. (12 de junho de 2004). «Dinosaur Paleoecology». University of California Press: 614–626. ISBN 978-0-520-24209-8. Consultado em 20 de abril de 2021 
  65. Robert T. Bakker (janeiro de 2000). «Brontosaur killers: Late Jurassic allosaurids as sabre-tooth cat analogues»Registo grátis requerido. GAIA - Ecological Perspectives on Science and Society 
  66. Antón, M.; Sánchez, M.; Salesa, M. J.; Turner, A. (30 de dezembro de 2003). «The muscle-powered bite of Allosaurus (Dinosauria; Theropoda): an interpretation of cranio-dental morphology». Estudios Geológicos (em espanhol) (5-6): 313–323. ISSN 1988-3250. doi:10.3989/egeol.03595-6106. Consultado em 20 de abril de 2021 
  67. Farlow, James O. (1976). «Speculations about the diet and foraging behavior of large carnivorous dinosaurs». American Midland Naturalist. 95 (1). pp. 186–191. JSTOR 2424244. doi:10.2307/2424244 
  68. Lambert, David; the Diagram Group (1983). «Allosaurids». A Field Guide to Dinosaurs. New York: Avon livros. pp. 80–81. ISBN 978-0-380-83519-5 
  69. Lessem, Don; Glut, Donald F. (1993). «Allosaurus». The Dinosaur Society's Dinosaur Encyclopedia. [S.l.]: Random House. pp. 19–20. ISBN 978-0-679-41770-5. OCLC 30361459 
  70. Holtz, Thomas R. Jr.; Molnar, Ralph E.; Currie, Philip J. (2004). «Basal Tetanurae». In: Weishampel David B.; Dodson, Peter; Osmólska, Halszka. The Dinosauria 2nd ed. Berkeley: University of California Press. pp. 71–110. ISBN 978-0-520-24209-8 
  71. Tanke, Darren H. (1998). «Head-biting behavior in theropod dinosaurs: Paleopathological evidence». Gaia (15). pp. 167–184 
  72. Currie, Philip J. (1999). «Theropods». In: Farlow, James; Brett-Surman, M.K. The Complete Dinosaur (em inglês). Indiana: Indiana University Press. p. 228. ISBN 978-0-253-21313-6 
  73. Roach, Brian T.; Brinkman, Daniel L. (2007). «A reevaluation of cooperative pack hunting and gregariousness in Deinonychus antirrhopus and other nonavian theropod dinosaurs». Bulletin of the Peabody Museum of Natural History. 48 (1). pp. 103–138. doi:10.3374/0079-032X(2007)48[103:AROCPH]2.0.CO;2 
  74. Goodchild Drake, Brandon (2004). «A new specimen of Allosaurus from north-central Wyoming». jornal of Vertebrate Paleontology (em inglês). 24 (3, Suppl). p. 65A. doi:10.1080/02724634.2004.10010643 
  75. Bakker, Robert T.; Bir, Gary (2004). «Dinosaur crime scene investigations: theropod behavior at Como Bluff, Wyoming, and the evolution of birdness». In: Currie, Philip J.; Koppelhus, Eva B.; Shugar, Martin A.; Wright, Joanna L. Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (em inglês). Bloomington and Indianapolis: Indiana University Press. pp. 301–342. ISBN 978-0-253-34373-4 

Ver também[editar | editar código-fonte]

Commons
O Commons possui imagens e outros ficheiros sobre Alossauro

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre dinossauros é um esboço relacionado ao Projeto Dinossauros e Animais Pré-Históricos. Você pode ajudar a Wikipédia expandindo-o.