Aquecimento oceânico

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Gráfico mostrando a elevação na quantidade de calor armazenado nos oceanos nas últimas décadas

O aquecimento oceânico é a elevação da temperatura média dos oceanos. É um fenômeno que já ocorreu no passado geológico por causas naturais, mas no presente tem sido provocado pelo homem, como um dos resultados do aquecimento global.

O aquecimento oceânico desencadeia uma série de efeitos secundários de grande impacto por si mesmos, como a subida do nível do mar, mudanças na salinidade, oxigenação e estratificação das massas de água, prejuízos à biodiversidade, interferência nos padrões de ventos e chuvas e intensificação dos episódios de clima extremo, como os tufões, entre outras consequências. Essas mudanças atuam em combinação, potencializando seus efeitos, e afetam todo o planeta. Além de representarem um grave desequilíbrio ecológico, elas colocam sérios desafios para a sociedade em termos de segurança alimentar, física, política, econômica e social, tendo consequências que se ramificam sobre todos os aspectos da vida humana.

Origem[editar | editar código-fonte]

O aquecimento oceânico é um produto direto do aquecimento global. Por uma reação física simples, o aquecimento atmosférico transmite energia térmica para as águas, elevando sua temperatura. O aquecimento global, um fenômeno inequívoco e de vastas proporções, por sua vez, tem origem claramente humana, sendo produto da continuada emissão de gases estufa na atmosfera, oriundos da queima de combustíveis fósseis, desmatamento, processos industriais, desperdício de alimentos e outros fatores de menor monta. O acúmulo desses gases na atmosfera impede que o calor da Terra se dissipe para o espaço, elevando os níveis globais de calor. A este processo se dá o nome de intensificação do efeito estufa.[1]

Níveis de aquecimento[editar | editar código-fonte]

Desde 1990 o Painel Intergovernamental sobre Mudanças Climáticas (IPCC) tem sintetizado a bibliografia especializada sobre o aquecimento global, incluindo o efeito do aquecimento oceânico, entre os muitos que o fenômeno produz. De acordo com as conclusões do IPCC, a camada superficial dos oceanos (até 700 metros) seguramente aqueceu desde 1971, e provavelmente iniciou a esquentar na década de 1870. Não há muita segurança sobre os níveis de elevação térmica antes da década de 1970 devido à escassez de dados confiáveis, mas daquela data em diante as medições se multiplicaram, com métodos e equipamentos cada vez mais aprimorados, dando grande solidez aos achados.[1]

Como a transmissão de calor para as águas se dá através do ar, na camada mais superficial do oceano, até 75 metros, ocorre o aquecimento mais importante, cujos níveis entre 1971 e 2010 foram de 0,11ºC por década, com uma variabilidade de 0,09 a 0,13ºC, enquanto dos 75 m até os 700 m o aquecimento tem sido menos intenso, mas ainda perceptível, com uma elevação de cerca de 0,015ºC por década. É provável que tenha ocorrido aquecimento também entre os 700 m e os 2 mil metros a partir da década de 1950, e entre os 3 mil metros até o fundo a partir da década de 1990, mas estas camadas mais profundas ainda têm estimativas mais incertas. Os oceanos são grandes armazenadores de calor, e respondem por cerca de 93% de todo o acréscimo de energia térmica acumulado na Terra entre 1971 e 2010, com a camada até os 700 metros estocando cerca de 64% do total. O aquecimento apresenta variações regionais significativas devido a múltiplos fatores, como a geografia, padrões climáticos, correntes marinhas e outros. No geral, as águas do Hemisfério Norte estão se aquecendo mais, em particular a região norte do Oceano Atlântico.[1]

Efeitos[editar | editar código-fonte]

Subida do nível do mar[editar | editar código-fonte]

Perda de terra firme pelo avanço das águas marinhas na costa da Louisiana entre 1932 e 2011.

Um dos efeitos mais diretos, evidentes e importantes do aquecimento oceânico é a subida do nível do mar, o que se deve à expansão térmica, uma reação física pela qual o volume dos corpos aquecidos se expande. Mesmo com notadas variações regionais, o nível médio das águas tem se elevado em todo o mundo, mas esta elevação ocorre em significativo descompasso em relação ao aquecimento atmosférico, uma vez que a água tem uma grande inércia térmica, ou seja, ela demora para aquecer e expandir quando exposta a uma fonte de calor. Não obstante, como o aquecimento atmosférico já se verifica há muitas décadas, o mar já está respondendo às mudanças visivelmente, expandindo o seu volume.[1]

Entre 1901 e 2010 o nível médio dos oceanos se elevou 19 centímetros, com uma variação de 17 a 21 cm e uma taxa média de elevação de 1,7 milímetros por ano, acelerando-se para 3,2 mm ao ano entre 1993 e 2010, com uma variação de 2,8 a 3,6 mm. Efeitos desta elevação para as regiões litorâneas incluem marés altas mais intensas, erosão costeira, destruição de estruturas construídas pelo homem, perda de terreno habitável e cultivável, maior vulnerabilidade a tempestades, e salgamento e contaminação do lençóis freáticos.[1][2]

As previsões sobre o nível máximo a que chegará o oceano são muito divergentes. O IPCC indica uma faixa entre 26 e 98 centímetros em 2100,[1] mas vários estudos vêm afirmando que as suas estimativas são conservadoras e que a elevação poderá chegar a 2 metros no final do século.[3][4][5][6][7] O IPCC afirma ainda que se as tendências atuais de emissão de gases estufa permanecerem inalteradas a velocidade da elevação aumentará em relação ao período de 1971-2010.[1]

A zona beira-mar de Bremerhaven inundada por uma maré de tempestade.

A diferença entre as previsões se deve à incerteza sobre como a sociedade reagirá ao longo deste século, cessando ou não as emissões de carbono e outros gases, o que pode minimizar ou agravar a dimensão da elevação final. Porém, devido à grande inércia térmica da água, quando cessa a fonte de calor, a água demora para deixar de se expandir. Isso significa que mesmo se as emissões de gases estufa cessarem imediatamente, a água do mar continuará a se expandir e seu nível continuará a se elevar por centenas ou milhares de anos, especialmente devido ao lento aquecimento das águas profundas, que em certas regiões podem levar mais de mil anos para serem expostas ao contato com as camadas mais superficiais já aquecidas, o que demonstra a gravidade do problema, o peso da herança que esta geração deixará para suas sucessoras, e a necessidade de redução das emissões o quanto antes.[1][3]

Grande parte da população humana vive hoje nos litorais, cujas cidades em sua maioria expõem as pessoas a um elevado risco devido ao seu pouco preparo para enfrentar os desafios colocados pela elevação do nível do mar e os outros impactos derivados do aquecimento global. Na maioria dos casos, especialmente se as previsões mais pessimistas se concretizarem, será imperativa uma mudança em massa das populações para zonas mais altas, pois os custos do muralhamento costeiro em larga escala são altos demais.[8][9][2][10][11]

O avanço das águas sobre a terra firme também provoca mudanças nos ecossistemas costeiros e em sua biodiversidade.[1][2] Populações costeiras de animais terrestres que já estão ameaçadas mostram alta vulnerabilidade e baixa capacidade adaptativa à elevação do nível do mar devido à progressiva fragmentação do seu habitat, ocupação de seus nichos ecológicos por espécies invasoras e maior susceptibilidade a doenças, entre outros fatores, aumentando sensivelmente o risco de extinção.[12][13][14] Além disso, como é esperada uma crescente interferência humana nas costas na tentativa de conter as águas, projeta-se grandes prejuízos adicionais a ecossistemas localizados nessas regiões. Mesmo seres marinhos podem ser afetados negativamente pela subida das águas, já que a erosão costeira modifica a estrutura dos seus habitats e aumenta os níveis de turbulência da água.[15]

Evaporação, precipitação, salinidade, ventos[editar | editar código-fonte]

Mudanças projetadas na média anual de precipitação no final do século XXI. As zonas mais amarelas ficam mais secas e as mais azuis, mais úmidas.

Mais de 3/4 de todas as trocas de água entre a atmosfera e a superfície da Terra através de evaporação e precipitação ocorrem sobre os oceanos, determinando uma grande parte das características do clima geral do planeta. O aumento do calor do oceano e da atmosfera está levando a uma maior evaporação de água. Por conseguinte, aumenta o nível de umidade atmosférica, disponibilizando mais água para retornar à superfície sob forma de chuva.[1][12]

Assim, o aquecimento oceânico tem como efeitos secundários provocar mudanças na salinidade do mar devido a mudanças na evaporação e nas precipitações; uma tendência de chuvas mais intensas em várias regiões do globo, e uma tendência de intensificar também os episódios climáticos extremos, como os tufões e furacões, cuja força destrutiva está na dependência direta do calor da água superficial e do nível de umidade do ar. Com a intensificação desses eventos, a população humana, especialmente a que vive no litoral, fica exposta a riscos mais elevados.[1][12]

Ao mesmo tempo, o vapor d'água é um gás estufa, e de todos é o que tem maior impacto no conjunto devido à sua presença em grande quantidade na atmosfera. Disso deriva que um aumento na concentração de vapor d'água no ar, oriundo da evaporação do oceano, inevitavelmente amplifica o aquecimento global em um ciclo de reforço mútuo. Além disso, um ar mais quente e mais úmido se comporta de maneira diferente do que um ar seco e frio, o que significa que os padrões de ventos também sofrem modificações com o aquecimento e umidificação da atmosfera.[1]

Liberação de metano[editar | editar código-fonte]

Um efeito que até há pouco era desconhecido é a liberação de metano estocado em sedimentos depositados no fundo do oceano sob a forma de hidratos de metano (ou clatratos), que resultam da sua combinação com as moléculas de água em condições de baixa temperatura e/ou alta pressão, como as que ocorrem nas regiões frias ou em águas profundas. O metano é um dos principais gases estufa, mas nesta combinação ele não representa ameaça. Porém a elevação da temperatura do oceano possibilita que a combinação seja desfeita e o metano escape para a atmosfera, circunstância que tem sido chamada de "detonação da bomba de clatratos".[16][17][18][19][20] O elevado risco que isso representa deriva da imensa quantidade de gás estocado como clatrato, em torno de dez mil gigatoneladas.[21] A liberação de apenas uma pequena fração desse metano faria com que os níveis atmosféricos aumentassem em até mil vezes em relação aos níveis pré-industriais. Além disso, o metano é de 20 a 60 vezes mais potente do que o gás carbônico em sua capacidade de aumentar o efeito estufa. Em condições normais, cerca de 90% do metano liberado de águas profundas é oxidado em seu caminho até a superfície e perde seu potencial de ameaça térmica, mas por outro lado contribui para a maior acidificação e desoxigenação da água. No Ártico, que tem grande parte do seu oceano composto de águas rasas, a estabilidade dos clatratos depende em essência da baixa temperatura, e assim a emergência de metano do leito marinho não sofre bloqueio significativo. Várias zonas com grandes depósitos são sujeitas a terremotos, aumentando a possibilidade de exposição direta do metano.[16][17][21][22][23][19] O entendimento desses mecanismos ainda é incompleto, mas segundo Archer, "existe na Terra tanto metano na forma de hidratos que parece o ingrediente perfeito para um cenário apocalíptico. [...] O reservatório de hidratos de metano tem o potencial de aquecer o clima da Terra até um estado semelhante ao da 'estufa do Eoceno' dentro de poucos anos. O potencial para uma devastação planetária colocado pelo reservatório de hidratos de metano parece, portanto, comparável à destrutividade de um inverno nuclear ou de um impacto de um meteorito".[17]

Derretimento de gelo[editar | editar código-fonte]

O declínio do gelo flutuante do Ártico é um dos sinais mais evidentes do aquecimento. A animação mostra a redução entre 1979 e 2010.
Colapso da plataforma de gelo Larsen B na Antártida. Esta plataforma de gelo tinha uma área equivalente à do estado americano de Rhode Island.

Também é importante o efeito do aquecimento das águas sobre o gelo marinho, interferindo em sua dinâmica e acelerando as taxas de derretimento, que sofrem influência também do aquecimento da atmosfera. Os gelos flutuantes do Oceano Ártico são os que têm sido mais intensamente afetados, verificando-se uma redução de grande magnitude em sua espessura e área desde pelo menos a década de 1950, acelerando-se nas décadas mais recentes.[1]

Isso tem graves implicações para os ecossistemas polares, pois várias espécies dependem da existência do gelo para sobreviver, como as focas e ursos polares, que descansam sobre placas flutuantes entre seus mergulhos, ou certas algas unicelulares, que estão na base da cadeia alimentar, e que se fixam nas placas de gelo, ou certos tipos de krill, que ali encontram abrigo, e afetam outras populações de muitas maneiras distintas.[24][25][26][27]

Além disso, a redução das brancas superfícies geladas significa uma redução do albedo terrestre, a capacidade da Terra de devolver radiação recebida para o espaço, já que os objetos brancos são os maiores refletores de radiação, o que intensifica o ciclo de aquecimento global.[1] Por outro lado, o derretimento dos gelos polares exerce um impacto significativo nos padrões de salinidade e temperatura da água e no sistema de correntes marinhas.[28]

No Oceano Ártico a taxa de redução no gelo flutuante tem sido de 3,5 a 4,1% por década desde 1979, o que representa uma perda de 45 mil a 51 mil km2 por década. A redução na espessura das placas invernais entre 1980 e 2008 foi de 1,3 a 2,3 metros. Há grande dose de certeza de que a velocidade de dispersão das placas também aumentou, e o período anual de derretimento provavelmente também aumentou. O período em que o trecho entre Mar da Sibéria e o Mar de Beaufort ficou inteiramente livre de gelo flutuante aumentou sua duração em cerca de três meses desde 1979.[1]

O caso da Antártida é diferente, devido ao fato de que a maior parte de seu gelo se localiza sobre massas de terra, e suas características são menos conhecidas do que as do Ártico. As observações indicam que tem ocorrido em certas áreas uma expansão na área de oceano coberta por gelo, e em outras uma redução. Paralelamente, há indícios de que a estrutura do gelo tem sofrido mudanças, com provável diminuição de sua espessura em algumas áreas. As plataformas de gelo em torno da Península Antártica e no Mar de Weddell, porém, há décadas têm experimentado uma nítida retração geral. Os gelos flutuantes dos mares de Bellingshausen e Amundsen também tem mostrado uma tendência de retração.[1]

Correntes marinhas e estratificação[editar | editar código-fonte]

A temperatura é um dos fatores que influenciam a formação e a intensidade das correntes marinhas. Modificações no padrão dos ventos, na precipitação, na umidade e na temperatura atmosférica, bem como na salinidade e densidade da água, também têm um impacto, mas o conhecimento de sua influência sobre a circulação marinha ainda é pobre.[1] No entanto, evidências paleográficas apontam que em períodos geológicos anteriores em que houve um aquecimento global importante a circulação marinha foi drasticamente modificada.[28] Várias evidências vêm se acumulando indicando mudanças recentes em alguns sistemas de correntes. Os giros subtropicais do norte e sul do Oceano Pacífico, por exemplo, provavelmente ficaram maiores e mais intensos desde 1993, e a Corrente Circumpolar Antártica moveu-se em direção ao sul, mas não é claro até que ponto isso se deve ao aquecimento da água ou a outros efeitos do aquecimento global, como a mudança no padrão dos ventos. Provavelmente uma combinação de efeitos é o fator determinante nas mudanças observadas. Ao mesmo tempo em que as correntes são afetadas pelas forças externas, elas também influem nos ventos, na umidade atmosférica e na temperatura do ar, entre outros fatores, sendo com efeito um dos mais poderosos meios naturais de transporte de calor entre as várias regiões do mundo, o que acaba por colocar todo o sistema de trocas ar-mar em desequilíbrio.[1][28] Por outro lado, o aquecimento mais rápido da camada superficial das águas tem causado uma estratificação mais acentuada entre as camadas, o que pode intensificar episódios de desoxigenação em virtude de dificultar as trocas gasosas entre as camadas profundas e as superficiais, que são mais oxigenadas.[1]

Mudanças nas correntes marinhas e na estratificação também afetam a biodiversidade de várias maneiras importantes, alterando rotas de migração e os ciclos reprodutivos e interferindo na oferta de alimento, fatores que por fim levam ao declínio das populações ou sua redistribuição geográfica, com impactos sobre a economia, a política e a segurança alimentar das nações.[29][28][30]

Biodiversidade e sociedade[editar | editar código-fonte]

As espécies marinhas evoluíram ao longo de milênios acostumadas a determinados parâmetros químicos e físicos da água, onde se inclui a temperatura, e a mudança coloca sua sobrevivência em grave risco. Para vasto número de espécies, a velocidade em que essas mudanças estão acontecendo é demasiada para que se efetive uma adaptação. Se não são capazes de migrar para regiões mais favoráveis, sua morte é certa. Mas se a migração é salvadora para uns, é prejudicial para outros, cujos territórios são ocupados por espécies que chegaram de longe e se tornaram invasoras, competindo por espaços de nidificação e abrigo e por alimento.[1][31][12] A migração de populações valiosas para o homem também deve prejudicar as atividades pesqueiras de muitas regiões.[12]

Animais mortos por desoxigenação no fundo do mar Báltico, 2006.

As reações químicas do metabolismo animal e vegetal são diretamente influenciadas pela temperatura, o que se torna ainda mais importante no caso dos seres marinhos, que em sua maioria têm uma temperatura corporal em equivalência direta à temperatura da água circundante. O aquecimento das águas provoca também um maior consumo de oxigênio, torna as espécies mais vulneráveis a malformações congênitas e doenças, altera os padrões e ritmos de crescimento, interfere na oferta de alimentos e altera os ciclos de reprodução.[32][33][34][35][36]

A elevação da temperatura atua em combinação com outros estressantes ambientais provocados pelo aquecimento global, como a desoxigenação e acidificação da água, e fatores adicionais, como a poluição química de fertilizantes e efluentes industriais, o lixo marinho e a pesca excessiva, multiplicando os efeitos adversos sobre a vida nos oceanos. Com a projetada continuidade das agressões ao meio ambiente, a biodiversidade marinha, que já dá mostras de estar em empobrecimento acelerado, deve declinar ainda mais, colocando um imenso desafio diante das nações do mundo, que dependem em elevada proporção dos recursos naturais que retiram do mar.[12][37][1][31][38]

Mais de 500 milhões de pessoas em todo o planeta têm suas vidas de alguma forma ligadas ao mar, e 14 milhões encontram emprego apenas na atividade pesqueira. Mais de 3 trilhões de dólares que circulam na economia mundial anualmente vêm de produtos marítimos diretos, e 21 trilhões de dólares derivam de serviços ambientais indiretos.[31] Disso se percebe a enorme importância da conservação dos mares em uma condição saudável. O esgotamento dos estoques de peixes, moluscos, crustáceos e algas comestíveis sem dúvida afetará a estabilidade política, social e cultural de muitas nações, especialmente as mais pobres e as que mais dependem do mar, e acentuará o prolema da fome crônica que hoje aflige mais de 800 milhões de pessoas.[12][31][39][9]

Referências

  1. a b c d e f g h i j k l m n o p q r s t u IPCC. Climate Change 2013: The Physical Science Basis. Working Group I — Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013
  2. a b c Nicholls, Robert J. & Tol, Richard S. J. "Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century". In: Philosophical Transactions of The Royal Society A, 2006; 364 (1841):1073-1095
  3. a b UNESCO. Sea-level Rise and Variability: A summary for policy makers, 2010
  4. Grinsted, A., J. C. Moore, & S. Jevrejeva. "Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD". In: Climate Dymamics, 2010, 34 (4):461-472
  5. Rignot, E. et alii. "Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise". In: Geophysical Research Letters, 2011; 38(5)
  6. Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies, National Research Council of the National Academies. "7 Sea Level Rise and the Coastal Environment". In: America’s Climate Choices: Panel on Advancing the Science of Climate Change. The National Academies Press. 2010, p. 245
  7. Gillis, Justin. "As Glaciers Melt, Science Seeks Data on Rising Seas". The New York Times, 13/11/2010
  8. De Sherbinin, A., Schiller, A. & Pulsipher, A. "The vulnerability of global cities to climate hazards". In: Environ Urban, 2007; (19):39–64
  9. a b Nellemann, C. et al. (Eds). The environmental food crisis – The environment’s role in averting future food crises. UNEP Rapid Response Assessment Series. United Nations Environment Programme, GRID-Arendal
  10. Titus, James G. et alii. "Greenhouse effect and sea level rise: The cost of holding back the sea". In: Coastal Management, 1991; 19 (2)
  11. Bosello, Francesco et alii. "Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise". In: Environmental and Resource Economics, 2007; 37 (3):549-571
  12. a b c d e f g IPCC. "Summary for policymakers". In: Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014
  13. Benscoter, A. M. et al. "Threatened and Endangered Subspecies with Vulnerable Ecological Traits Also Have High Susceptibility to Sea Level Rise and Habitat Fragmentation". In: PLOS ONE, 2013; 8 (8):e70647.
  14. Bittencourt-Silva, G. B. & Silva, H. R . "Effects of Fragmentation and Sea-Level Changes upon Frog Communities of Land-Bridge Islands off the Southeastern Coast of Brazil". In: PLoS ONE, 2014; 9 (7):e103522
  15. Yamanaka, T., Raffaelli, D. & White, P. C. L. "Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes". In: PLoS ONE, 2013; 8 (7):e68160
  16. a b Ruppel, C. D. "Methane Hydrates and Contemporary Climate Change". In: Nature Education Knowledge, 2011; 3 (10):29
  17. a b c Archer, D. "Methane hydrate stability and anthropogenic climate change". In: Biogeosciences, 2007; (4):521–544
  18. UNEP. "Methane from Hydrates". In: UNEP Year Book 2014 emerging issues update.
  19. a b Hickey, Hannah. "Warmer Pacific Ocean could release millions of tons of seafloor methane". University of Washington Today, 09/12/2014
  20. Hautala, Susan L. et al. "Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming". In: Geophysical Research Letters, 2014; 41 (23): 8486–8494
  21. a b Gaskill, Alvia. "Catastrophic Methane Hydrate Release Mitigation". In: The State University of New Jersey. DOE Meeting Summary.
  22. NOAA Climate Monitoring and Diagnostics Lab. Role of Ocean Methane and Gas Hydrates in Global Climate Change Workshop. Final Report, 2005
  23. Kretschmer, Kerstin et al. "Modeling the fate of methane hydrates under global warming". In: Global Biogeochemical Cycles, 2015; 29 (5):610–625
  24. Hamilton, S. G. et al. "Projected Polar Bear Sea Ice Habitat in the Canadian Arctic Archipelago". In: PLoS ONE, 2014; 9 (11):e113746
  25. Assmy, P. et al. "Floating Ice-Algal Aggregates below Melting Arctic Sea Ice". In: PLoS ONE, 2013; 8 (10):e76599
  26. Fernández-Méndez, M. et al. "Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean". In: PLoS ONE, 2014; 9 (9):e107452
  27. Flores, H. et al. "The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat". In: PLoS ONE, 2012; 7 (2):e31775
  28. a b c d The National Science Foundation. Solving the Puzzle: Researching the Impacts of Climate Change Around the World. The National Science Foundation. Office of Legislative and Public Affairs, 2009, pp. 27-43
  29. Hove, Sybille van den & Moreau, Vincent. Deep-sea Biodiversity and Ecosystems: A Scoping Report on Their Socio-economy, Management and Governanace. UNEP/Earthprint, 2007, p. 52
  30. Institute for European Environmental Policy. Impacts of climate change on all European islands, 2013, p. 22
  31. a b c d United Nations Development Programme. Catalysing Ocean Finance. Volume I: Transforming Markets to Restore and Protect the Global Ocean, 2012
  32. Rivest, E. B. & Hofmann, G. E. "Responses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming". In: PLoS ONE, 2014; 9 (4):e96172
  33. Rosa, R. et al. "Ocean Warming Enhances Malformations, Premature Hatching, Metabolic Suppression and Oxidative Stress in the Early Life Stages of a Keystone Squid". In: PLoS ONE, 2012; 7( 6):e38282
  34. Strobel, A. et al. "Mitochondrial Acclimation Capacities to Ocean Warming and Acidification Are Limited in the Antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons". In: PLoS ONE, 2013; 8 (7):e68865
  35. William, W. L. et al. "Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems". In: Nature Climate Change, 2013; (3):254–258
  36. Mackenzie C. L. et al. "Future Oceanic Warming and Acidification Alter Immune Response and Disease Status in a Commercial Shellfish Species, Mytilus edulis L.". In: PLoS ONE, 2014; 9 (6):e99712
  37. Chen, C.-S. et al. "Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly". In: PLoS ONE, 2015; 10 (2):e0118300
  38. Smale, D. A. et al. "Turning on the Heat: Ecological Response to Simulated Warming in the Sea". In: PLoS ONE, 2011; 6 (1):e16050
  39. Technical Expert Group on Biological Diversity and Climate Change. Interlinkages between Biological Diversity and Climate Change: Advice on the integration of biodiversity considerations into the implementation of the United Nations Framework Convention on Climate Change and its Kyoto Protocol. Secretariat of the Convention on Biological Diversity, 2003

Ver também[editar | editar código-fonte]