Centro de massas

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Centro de massa)
Saltar para a navegação Saltar para a pesquisa
O centro de massas é o único ponto do satélite que segue a trajetória indicada.

Em física, o centro de massas é o ponto hipotético onde toda a massa de um sistema físico está concentrada e que se move como se todas as forças externas estivessem sendo aplicadas nesse ponto.

Se o sistema for constituído por um corpo, o centro de massas pode ser considerado como o ponto onde aplicada uma força o corpo se move sem rotacionar, com torque resultante zero. Se o sistema for constituído por mais de um corpo, o centro de massas será o ponto em que, se unir os corpos em suas respectivas posições por um elemento que os integre (tal como um segmento rígido), pode ser suspendido mantendo todos os corpos a uma mesma altura.

O uso do centro de massas na mecânica clássica é atribuído à simplificação de movimentos compostos realizados por corpos rígidos – aqueles em que a posição relativa das partículas que o compõem não muda ao longo do tempo - transformando-os em movimentos simples, onde é possível que haja aplicação das Leis de Newton como uma partícula. Quando um objeto de formato irregular é lançado ao ar, por exemplo, há diferentes movimentos em todas as partículas que o constituem, entretanto, há um ponto em que segue o movimento de tal objeto como se fosse uma partícula, esse ponto é o centro de massas.[1]

O centro de massas também pode ser chamado de centro de gravidade quando um corpo estiver sob a influência de um campo gravitacional uniforme, ou seja, aquele em que a força gravitacional é igualmente exercida em todos os pontos do objeto. Ainda, se um objeto tiver forma regular e densidade homogênea, o centro de massas coincidirá com o centroide, ou seja, o centro geométrico do objeto.

História[editar | editar código-fonte]

Considerando que os corpos possuem mesma massa e estão à mesma distância do fulcro da alavanca, nas duas situações o centro de massas se localizará sobre o ponto de apoio, mesmo com os corpos ocupando posições diferentes nesses casos.

Inicialmente, o conceito de centro de massas foi apresentado na forma de centro de gravidade na Grécia Antiga por Arquimedes de Siracusa, engenheiro, físico e matemático. Isso se deve por que o centro de massas em um objeto é o mesmo que o centro de gravidade se o campo gravitacional for uniforme. Trabalhando em campo gravitacional uniforme, ele demonstrou que o torque exercido em uma alavanca sempre seria o mesmo se, mudando as posições dos objetos, o centro de massas permanecesse fixo.

Já em seu trabalho com corpos flutuantes, Arquimedes descobriu que a posição e orientação de um objeto na superfície de um fluido é aquela onde o centro de massa tende a ficar na posição mais baixa possível. Além dessas descobertas, ele desenvolveu técnicas matemáticas para definir o centro de massa de diversos objetos de densidade uniforme.[2][nota 1]

Localização do centro de massas[editar | editar código-fonte]

A intersecção das linhas de prumo no objeto é o Centro de Massa do mesmo.

Antes de se iniciar o processo, é necessário compreender que o centro de massas será o mesmo que o centro de gravidade se o campo gravitacional for uniforme. O experimento só terá efeito nesse caso. O centro de massas de um corpo de densidade uniforme estará localizado em seu eixo de simetria.

Para encontrar o centro de massas de um objeto plano – como uma placa metálica ou um quadro – deve-se pendurá-lo em dois pontos diferentes, sendo que, em cada etapa, deve-se traçar uma linha reta vertical do ponto de suspensão até a base do objeto. Dessa forma, as duas linhas traçadas se encontrarão em um ponto comum, sendo esse o centro de massas do objeto.[3]

Para um objeto com um formato complexo – aqueles ainda planos, mas sem uma forma geométrica definida conhecida – é possível encontrar o centro de massas subdividindo-o em pequenas partes mais simples, sendo que, se for possível encontrar a massa total e o centro de massas de cada parte, então o centro de massas do objeto será a média de suas partes.[4]

Esse processo também é válido para objetos ocos, valendo-se considerar o espaço vazio como uma massa negativa – o objeto será de densidade uniforme, então, basta apenas calcular a massa que existiria em determinado volume e considerá-la como negativa[5].Para objetos de formato irregular, onde os métodos anteriores mostram-se ineficientes para medidas, pode-se ser utilizado um planímetro para realizar os cálculos de área, e então conhecida a densidade do objeto, obter sua massa.[6][nota 2]

Centro de massas de um sistema de partículas[editar | editar código-fonte]

Possível localização do centro de massa entre duas partículas.

Para definir o centro de massas (CM) de um sistema de partículas deve-se considerar três tipos de variáveis desse sistema: o número de partículas que o compõem, a massa e a posição de cada partícula. Podemos deduzir a equação geral da definição do Centro de Massas a partir de um sistema simples de apenas duas partículas.[7]

Sistema com duas partículas[editar | editar código-fonte]

Dadas duas partículas de massa e separadas por uma distância , estabelece-se arbitrariamente a origem do eixo x como a posição da partícula de massa .

A posição do centro de massas (CM) desse sistema de duas partículas pode ser definida como:

Se , existe apenas uma partícula e o centro de massas deve estar na posição dessa partícula uma vez que será igual a zero.


Se , o sistema apresenta apenas uma partícula (de massa ). A posição desta partícula será igual a .


Se , o centro de massas se encontra no ponto médio da distância entre as duas partículas.


Se e forem diferentes de , a posição do centro de massas assume valores entre e e é definida como:


Sendo a massa total do sistema, ou seja, , temos:


Sistema com n partículas[editar | editar código-fonte]

Considerando um sistema com o número n de partículas, podemos definir de forma geral o Centro de Massa a partir da equação anterior.

Dado um sistema com n partículas posicionadas ao longo de um eixo x, no qual a massa total é dada por , a posição do centro de massa é definida por:

Sistema de três dimensões[editar | editar código-fonte]

Uma vez que determinado sistema de partículas ocupa três dimensões, a definição do centro de massas desse sistema deve ser feita considerando cada dimensão de forma independente.

Dado um sistema de com n partículas distribuídas em três dimensões, a posição do centro de massa é dada por três coordenadas (x, y e z) definidas por:

Sistema de três dimensões (equação vetorial)[editar | editar código-fonte]

Exemplo de localização de uma partícula através dos vetores de posição.

O centro de massa de um sistema de três dimensões também pode ser definido a partir do vetor posição desse sistema. Dada uma partícula de coordenadas , e seu vetor posição é definido por:

Em que o índice indica a partícula, e , e são os vetores unitários que apontam, respectivamente, no sentido positivo do eixo x, y e z.

De forma análoga, a posição do centro de massa de um sistema de partículas é definida pelo vetor posição:

Em que é a massa total do sistema.

Centro de massa de corpos maciços (homogêneos)[7][editar | editar código-fonte]

Para definir o centro de massa de objetos homogêneos divide-se e distribui-se a massa de um objeto de forma contínua, tornando cada partícula do objeto elementos infinitesimais de massa . Desta forma as coordenadas do centro de massa são definidas por:

Em que é a massa do corpo.

Considerando que objetos homogêneos apresentam massa especifica (massa por unidade de volume) representada pelo símbolo ρ (letra grega rô) e que a mesma apresenta valores iguais para todos os elementos infinitesimais destes objetos define-se:

Em que é o volume ocupado por um elemento de massa , e é o volume total do objeto

Segunda Lei de Newton para um sistema de partículas[7][editar | editar código-fonte]

Movimento do centro de massa de um sistema[editar | editar código-fonte]

Dado um conjunto de n partículas de massas (possivelmente) diferentes, para descrever o movimento do centro de massa desse conjunto (que age como uma partícula cuja a massa é igual à massa total do sistema), deve-se atribuir-lhe uma posição, uma velocidade e uma aceleração definidos de acordo com a equação vetorial:

é a força resultante de todas as forças externas que agem sobre o sistema;

é a massa total do sistema;

é a aceleração do centro de massa do sistema.

Componentes de e em relação à três eixos de coordenadas:

Momento linear de um sistema de partículas[editar | editar código-fonte]

Momento Linear em um Sistema de Partículas é encontrado usando o centro de massas do sistema.

Dado um sistema com n partículas, onde cada partícula apresenta massa, velocidade e momento linear determinados. O momento linear total é definido como a soma vetorial dos momentos lineares de cada partícula.

Desta forma temos o momento linear de um sistema de partículas definido por:

Uso do baricentro[editar | editar código-fonte]

Existem dois tipos de corpos conhecidos atualmente que servem para estabelecer formas de analisar o centro de massa: os corpos extensos heterogêneos e os corpos extensos homogêneos[8].

A aplicação em corpos homogêneos é feita analisando regiões simétricas de polígonos regulares[9] e aplicando definições de figuras geométricas, pois eles são objetos que possuem lados e ângulos iguais, como por exemplo, quadrados e cubos. Segundo essa definição, as análises de corpos heterogêneos só podem ser efetuadas a partir do estudo por Cálculo ou por meio da divisão geométrica dos corpos deformados, usando a geometria.

Centro de massa de um quadrado[editar | editar código-fonte]

O centro de massa de um quadrado é estabelecido por meio do encontro de suas diagonaissegmentos de retas com extremidades em vértices não consecutivos do polígono[10] – esse encontro no centroide do objeto é feito por duas retas que se intercruzam no ponto médio, revelando uma simetria em relação aos ângulos e lados do quadrado.[11]

Sendo assim, para calcular a localização do centro de massas em um quadrado é necessário saber inicialmente o valor de seus lados, que será dividido por dois para descobrir o ponto médio, ou seja, L/2. Após fazer esse procedimento, os valores encontrados para o centro de massa estarão em coordenadas no plano cartesiano, em que, a coordenada do eixo x é a base e o do eixo y é a altura.

Centro de massa em um quadrado que é formado pelo ponto de encontro das diagonais.

Tendo em vista que o centro de massa de um paralelogramo é o ponto de encontro das diagonais que interceptam os vértices da figura geométrica (objeto), o mesmo procedimento é aplicado para todos corpos extensos homogêneos.[12] [13]

Circunferência[editar | editar código-fonte]

Para analisar o centro de massa de uma circunferência, basta saber o seu próprio centro geométrico, por se tratar de um objeto totalmente esférico e homogêneo. Para tanto, a análise é feita a partir da distância entre o centro e seu contorno, ou seja, seu raio, podendo ser desenhado sob um plano cartesiano, que propiciará uma divisão em coordenadas cartesianas referente ao centro no eixo X e Y e com isso, uma análise sobre a localização geométrica do centro de massa.[13]

Triângulo[editar | editar código-fonte]

Outro exemplo de centro de massa em um corpo extenso homogêneo pode ser aplicado aos pontos de encontro das diagonais em triângulos não regulares. Para fazermos esse procedimento, devemos utilizar o Baricentro – considerado como o centro de massa e de gravidade de um triângulo homogêneo[13].Tendo em vista que um triângulo possui três vértices, há também três medianas que se interceptam em um ponto comum que divide cada mediana em duas partes. Sendo assim, a semirreta que sai de um vértice irá ser o dobro da semirreta que não possui vértice, definimos essa característica como sendo o Baricentro de um Triângulo.[14]

Achando baricentro de um triângulo.

Exemplo [14]:

Os segmentos AMa, BMb, e CMc são medianas, pois a intersecção das três é encontrada em um único ponto, o centro do triângulo, ou seja, o baricentro.

Outro ponto a se considerar é a relação de comprimento entre as medianas, em que, as medidas dos segmentos AG, BG e CG são o dobro dos seus respectivos complementos, ou seja, AG = 2×GMa; BG = 2×GmB; CG = 2×GMc.

Para comprovarmos a afirmação acima, devemos considerar que G (baricentro - ponto de encontro entre as 3 diagonais) é igual ao um ponto X igual a outro ponto Y, sendo que esses pontos são referentes a intersecção entre BMb e AMa, ou seja, X = BMb∩CMc e Y = AMa∩CMc, tal que G = X = Y.

Com isso, pode-se verificar que os três pontos são semelhantes, pois a distância entre um lado ao ponto médio, é a mesma que a do outro lado ao seu respectivo ponto médio.

Provando [14]:

∆ABC= AMc é equivalente a BMc e AMb é equivalente a CMb. Logo, o segmento MbMc é paralelo à BC, sendo que MbMc é igual a metade da distância de BC, pois é o ponto médio de dois lados/segmentos do triângulo.

Ou seja: ∆ABC = AMc≡BMc e AMb≡ CMb. MbMc ∕∕BC e MbMc = BC/2.

O mesmo pode ser feito com X, obtendo os seguintes resultados:

∆XBC = XD≡BD e XE≡CE → DE∕∕BC e DE = BC/2.

O segmento MbMc é paralelo e equivalente a DE, então MbMcDE é um paralelogramo, pois a diagonal que atravessa DX é equivalente a diagonal que atravessa XMb, revelando a propriedade do baricentro, que BX é o dobro de Mb.

→ {DX ≡ XMb → BX = 2×Mb

São feitas as mesmas relações com o lado EX, revelando que:

→ {EX ≡ XMc → CX = 2×Mc

Portanto, para Y = AMa∩CMc são feitas as mesmas associações, concluindo que os segmentos de reta CY AY são iguais ao dobro de YMc e YMa respectivamente.

- CY = 2×YMc

- AY = 2×YMa

Então, como X = Y, denominamos esse ponto como sendo G (baricentro e centro de massa do objeto), que irá voltar nas duas definições iniciais:

- AMa ∩ BMb ∩ CMc = G

- AG = 2×GMa; BG = 2×GMb; CG = 2×GMc.

Curiosidade [15]:

Outro modo de expressar a última equação, é repartindo o segmento de reta em três pequenas retas iguais, revelando que:

- AG = 2/3 × AMa ou GMa = 1/3 × AMa.

- BG = 2/3 × BMb ou GMb = 1/3 × BMb.

- CG = 2/3 × CMc ou GMc = 1/3 × CMc.

Baricentro e Centro de Gravidade[editar | editar código-fonte]

As características existentes na geometria plana ajudam a entender aspectos que se conectam com meios físicos. Sendo assim, a aplicação do baricentro é muito importante para demonstrar como o centro de gravidade age em um campo gravitacional uniforme.

Todos os conhecimentos iniciais que servem de infraestrutura para um estudo mais aprofundado sobre o centro gravitacional foram atribuídos ao matemático e astrônomo grego Arquimedes (287 a.C. - 212 a.C.). Desta forma, ele define que um corpo rígido suspenso por pontos em qualquer lugar com gravidade constante, após ser girado em seu eixo (aplicação de forças), deve-se permanecer na mesma posição de início, ou seja, o corpo permanecerá em equilíbrio em relação à Terra.[16]

Esse fenômeno é explicado por meio do equilíbrio existente entre a força peso do objeto (produto entre a massa em kg pela gravidade em ) e a Terra, já que, todos as forças de atração são equilibradas em um único ponto, denominado baricentro. Sendo assim, como a massa da Terra é maior do que a do objeto, a força resultante proporcionará uma atração equivalente com sentido para o centro terrestre. Por conseguinte, centro de gravidade é o ponto que garantem o equilíbrio de todas as forças atrativas.[16][7]

Notas

  1. Esta seção foi traduzida e adaptada de Center of Mass.
  2. Esta seção também foi traduzida e adaptada de Center of Mass.

Referências[editar | editar código-fonte]

  1. Feynman, R. P., Leighton, R. B., & Sands, M. (2008). Lições de Física–Vol. 1. Tradução de Adriana VR da Silva e Kaline R. Coutinho. Porto Alegre: Bookman.
  2. Shore, Steven N. (2008), Forces in Physics: A Historical Perspective, Greenwood Press, ISBN 978-0313-33303-3
  3. Kleppner, Daniel; Kolenkow, Robert (1973), An Introduction to Mechanics (2nd ed.), McGraw-Hill, ISBN 0-07-035048-5
  4. Feynman, Richard; Leighton, Robert; Sands, Matthew (1963), The Feynman Lectures on Physics, Addison Wesley, ISBN 0-201-02116-1
  5. Hamill, Patrick (2009), Intermediate Dynamics, Jones & Bartlett Learning, ISBN 978-0-7637-5728-1
  6. SANGWIN, CHRISTOPHER J. (2006), "Locating the centre of mass by mechanical means", Journal of the Oughtred Society, 15, archived from the original on 5 October 2011, retrieved 23 October 2011.
  7. a b c d HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física, volume 1: Mecânica. 10ª Ed. Rio de Janeiro: LTC, 2016. 372 p.
  8. SAMPAIO, J. L; CALÇADA C. S. Universo da Física 1. São Paulo: Atual, 2001. 3v. p. 495
  9. DOLCE, O.; POMPEU, J. N. - Fundamentos da matemática elementar, v.9: geometria plana, 9.ed. São Paulo, atual, 2013. p. 258.
  10. Ibidem. p. 133.
  11. Ibidem. p. 98, 107.
  12. Ibidem. p. 98
  13. a b c SAMPAIO, J. L; CALÇADA C. S. Universo da Física 1. São Paulo: Atual, 2001. 3v. p. 495
  14. a b c DOLCE, O.; POMPEU, J. N. - Fundamentos da matemática elementar, v.9: geometria plana, 9.ed. São Paulo, atual, 2013. p. 119 – 121.
  15. DOLCE, O.; POMPEU, J. N. - Fundamentos da matemática elementar, v.9: geometria plana, 9.ed. São Paulo, atual, 2013. p.121.
  16. a b ASSIS, A. K. T.; RAVANELLI, M. D. M. Reflexões sobre o conceito de centro de gravidade nos livros didáticos. Ciência & Ensino, vol. 2, n. 2, junho de 2008. p.1.


Ver também[editar | editar código-fonte]