Coeficiente de correlação de Pearson

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde Agosto de 2011). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Em estatística descritiva, o coeficiente de correlação de Pearson, também chamado de "coeficiente de correlação produto-momento" ou simplesmente de " de Pearson" mede o grau da correlação (e a direcção dessa correlação - se positiva ou negativa) entre duas variáveis de escala métrica (intervalar ou de rácio/razão).

Este coeficiente, normalmente representado por assume apenas valores entre -1 e 1.

  • Significa uma correlação perfeita positiva entre as duas variáveis.
  • Significa uma correlação negativa perfeita entre as duas variáveis - Isto é, se uma aumenta, a outra sempre diminui.
  • Significa que as duas variáveis não dependem linearmente uma da outra. No entanto, pode existir uma dependência não linear. Assim, o resultado deve ser investigado por outros meios.

Cálculo[editar | editar código-fonte]

Calcula-se o coeficiente de correlação de Pearson segundo a seguinte fórmula:

onde e são os valores medidos de ambas as variáveis. Para além disso

e

são as médias aritméticas de ambas as variáveis. Conforme consta em http://leg.ufpr.br/~silvia/CE701/node79.html

A análise correlacional indica a relação entre 2 variaveis lineares e os valores sempre serão entre +1 e -1. O sinal indica a direção, se a correlação é positiva ou negativa, e o tamanho da variavel indica a força da correlação.

Cabe observar que, como o coeficiente é concebido a partir do ajuste linear, então a fórmula não contém informações do ajuste, ou seja, é composta apenas dos dados.

Interpretando [1] [editar | editar código-fonte]

  • 0.9 para mais ou para menos indica uma correlação muito forte.
  • 0.7 a 0.9 positivo ou negativo indica uma correlação forte.
  • 0.5 a 0.7 positivo ou negativo indica uma correlação moderada.
  • 0.3 a 0.5 positivo ou negativo indica uma correlação fraca.
  • 0 a 0.3 positivo ou negativo indica uma correlação desprezível.

Interpretação geométrica[editar | editar código-fonte]

As duas séries de valores e podem ser consideradas como vetores em um espaço de n dimensões. e .

O cosseno do ângulo α entre estes vetores é dado pela fórmula (produto escalar normado):


Portanto

O coeficiente de correlação não é outro senão o cosseno do ângulo α entre os dois vetores!

Se = 1, o ângulo α = 0, os dois vetores são colineares (paralelos).
Se = 0, o ângulo α = 90°, os dois vetores são ortogonais.
Se = -1, o ângulo α = 180°, os dois vetores são colineares com sentidos opostos.
Mais geralmente : , ( é a inversa da função cosseno).

Ver também[editar | editar código-fonte]

  1. Mukaka, M.M. . "Statistics Corner: A guide to appropriate uso of Correlation coefficient in medical research". Malawai Medical Journal. DOI:PMC3576830. Visitado em 04/01/2016.