Coeficiente de correlação de postos de Spearman
Estatística |
---|
Em estatística, o coeficiente de correlação de postos de Spearman ou rô de Spearman, que recebe este nome em homenagem ao psicólogo e estatístico Charles Spearman, frequentemente denotado pela letra grega (rô) ou , é uma medida não paramétrica de correlação de postos (dependência estatística entre a classificação de duas variáveis). O coeficiente avalia com que intensidade a relação entre duas variáveis pode ser descrita pelo uso de uma função monótona.[1] A correlação de Spearman entre duas variáveis é igual à correlação de Pearson entre os valores de postos daquelas duas variáveis. Enquanto a correlação de Pearson avalia relações lineares, a correlação de Spearman avalia relações monótonas, sejam elas lineares ou não.[2] Se não houver valores de dados repetidos, uma correlação de Spearman perfeita de +1 ou -1 ocorre quando cada uma das variáveis é uma função monótona perfeita da outra.
Intuitivamente, a correlação de Spearman entre duas variáveis será alta quando observações tiverem uma classificação semelhante (ou idêntica no caso da correlação igual a 1) entre as duas variáveis, isto é, a posição relativa das observações no interior da variável (1º, 2º, 3º, etc.), e baixa quando observações tiverem uma classificação dessemelhante (ou completamente oposta no caso da correlação igual a -1) entre as duas variáveis.
O coeficiente de Spearman é apropriado tanto para variáveis contínuas, como para variáveis discretas, incluindo variáveis ordinais.[3] Tanto o de Spearman, como o de Kendall pode ser formulados como casos especiais de um coeficiente de correlação mais geral.
Definição e cálculo
[editar | editar código-fonte]O coeficiente de correlação de Spearman é definido como o coeficiente de correlação de Pearson entre variáveis classificadas em postos.[4]
Para uma amostra de tamanho , os dados brutos são convertidos em postos e é computado a partir de:
- em que
- denota o usual coeficiente de correlação de Pearson, mas aplicado às variáveis em postos;
- é a covariância das variáveis em postos;
- e são os desvios padrão das variáveis em postos.[5]
Apenas se todos os postos forem números inteiros distintos, o coeficiente pode ser calculado usando a fórmula popular:
Quando há valores idênticos, geralmente se atribui a cada valor um posto fracionário igual à média de suas posições na ordem ascendente dos valores, que é equivalente ao cálculo da média de todas as permutações possíveis.[8]
Se valores repetidos estiverem presentes nos conjuntos de dados, a equação produz resultados incorretos. Apenas se, em ambas as variáveis, todos os postos forem distintos, então, (vide número tetraédrico ). A primeira equação — normalizando pelo desvio padrão — pode ser usada até mesmo quando os postos forem normalizados a ("postos relativos"), porque não é sensível tanto à translação, quanto ao escalonamento linear.
Este método também não deve ser usado em casos em que o conjunto de dados estiver truncado, isto é, quando o coeficiente de correlação de Spearman for desejado para os registros do topo (seja pelos postos pré-mudança, pelos postos pós-mudança ou ambos). Neste caso, deve-se usar a fórmula do coeficiente de correlação de Pearson descrita acima.
O erro padrão do coeficiente foi determinado pelo estatístico britânico Karl Pearson em 1907 e pelo matemático britânico Thorold Gosset em 1920, sendo:
Quantidades relacionadas
[editar | editar código-fonte]Há várias outras medidas numéricas que quantificam a intensidade da dependência estatística entre parers de observações. A mais comum é o coeficiente de correlação produto-momento de Pearson, que é um método de correlação semelhante ao coeficiente de correlação de postos de Spearman, que mede as relações "lineares" entre números brutos, não entre seus postos.
Um nome alternativo para a correlação de postos de Spearman é "correlação de grau".[9] Nesta denominação, o "posto" de uma observação é substituído pelo "grau". Em distribuições contínuas, o grau de uma observação é, por convenção, sempre uma metade menor que o posto. Assim, as correlações entre graus e postos são iguais neste caso. De forma mais generalizada, o "grau" de uma observação é proporcional ao valor estimado da fração de uma população menor que um dado valor, com o ajuste da meia-observação nos valores observados. Assim, isto corresponde a um tratamento possível de postos empatados. Ainda que incomum, o termo "correlação de grau" ainda está em uso.[10]
Interpretação
[editar | editar código-fonte]O sinal da correlação de Spearman indica a direção da associação entre (a variável independente) e (a variável dependente). Se tende a aumentar quando aumenta, o coeficiente de correlação de Spearman é positivo. Se tende a diminuir quando aumenta, o coeficiente de correlação de Spearman é negativo. Um coeficiente de Spearman igual a zero indica que não há tendência de que aumente ou diminua quando aumenta. A correlação de Spearman aumenta em magnitude conforme e ficam mais próximas de serem funções monótonas perfeitas uma da outra. Quando e são perfeitamente monotonamente relacionadas, o coeficiente de correlação de Spearman se torna 1. Uma relação crescente monótona perfeita implica que, para quaisquer dois pares de valores de dados e , Xi − Xj e Yi − Yj terão sempre o mesmo sinal. Uma relação decrescente monótona perfeita implica que estas diferenças terão sempre sinais opostos.
O coeficiente de correlação de Spearman é frequentemente descrito como sendo "não paramétrico". Isto pode ter dois sentidos. Em primeiro lugar, uma correlação de Spearman perfeita ocorre quando e estão relacionados por qualquer função monótona, em contraste com a correlação de Pearson, que só dá um valor perfeito quando e estão relacionadas por uma função linear. O outro sentido em que a correlação de Spearman é não paramétrica se refere ao fato de que sua exata distribuição de amostragem pode ser obtida sem conhecimento (isto é, sem informação sobre os parâmetros) quanto à distribuição de probabilidade conjunta de e .[11]
Exemplo
[editar | editar código-fonte]Neste exemplo, os dados brutos na tabela abaixo são usados para calcular a correlação entre o QI de uma pessoa e o número de horas em que assiste televisão por semana.
QI, | Horas de TV por semana, |
---|---|
106 | 7 |
86 | 0 |
100 | 27 |
101 | 50 |
99 | 28 |
103 | 29 |
97 | 20 |
113 | 12 |
112 | 6 |
110 | 17 |
Primeiro, é necessário achar o valor do termo . Para fazer isto, executam-se os seguintes passos, refletidos na tabela abaixo:
- Ordene os dados de acordo com a primeira coluna (). Crie uma nova coluna e atribua a esta coluna os valores dos postos ;
- Em seguida, ordene os dados de acordo com a segunda coluna (). Crie uma quarta coluna e, analogamente, atribua a esta coluna os valores dos postos ;
- Crie uma quinta coluna para conter as diferenças entre os postos das duas colunas e ;
- Crie uma última coluna para conter os quadrados dos valores da coluna .
QI, | Horas de TV por semana, | posto | posto | ||
---|---|---|---|---|---|
86 | 0 | 1 | 1 | 0 | 0 |
97 | 20 | 2 | 6 | −4 | 16 |
99 | 28 | 3 | 8 | −5 | 25 |
100 | 27 | 4 | 7 | −3 | 9 |
101 | 50 | 5 | 10 | −5 | 25 |
103 | 29 | 6 | 9 | −3 | 9 |
106 | 7 | 7 | 3 | 4 | 16 |
110 | 17 | 8 | 5 | 3 | 9 |
112 | 6 | 9 | 2 | 7 | 49 |
113 | 12 | 10 | 4 | 6 | 36 |
Calculados os valores , são somados para encontrar . O valor de é 10. Agora, estes valores podem ser substituidos na equação :
o que resulta em ρ = −29/165 = −0,175757575... com um valor-p igual a 0,627188, usando a distribuição t de Student.
Este valor baixo mostra que a correlação entre QI e número de horas na frente da TV é muito baixa, ainda que o valor negativo sugira que, quanto mais tempo se passa assistindo televisão, mais baixo o QI. No caso de empates nos dados originais, esta fórmula não deve ser usada. Em vez disso, o coeficiente de correlação de Pearson deve ser calculado nos postos (quando se atribuem postos aos empates, como descrito acima).
Determinação da significância
[editar | editar código-fonte]Uma abordagem para testar se um valor observado de é significantemente diferente de zero ( sempre se manterá entre -1 e 1) consiste em calcular a probabilidade de que seria maior ou igual ao observado, dada a hipótese nula, ao usar um teste de permutação. Uma vantagem desta abordagem é que ela automaticamente leva em conta o número de valores empatados de dados na amostra e a forma como são tratados ao computar a correlação de postos.[12]
Uma abordagem faz paralelo ao uso da transformação de Fisher no caso do coeficiente de correlação produto-momento de Pearson, isto é, intervalos de confiança e testes de hipóteses relativos ao valor da população podem ser conduzidos usando a transformação de Fisher:[13]
Se for a transformação de Fisher de , o coeficiente de correlação de postos de Spearman amostral, e for o tamanho da amostra, então:
é um escore padronizado para que segue aproximadamente uma distribuição normal padrão sob a hipótese nula da independência estatística ().[14][15]
Pode-se também testar por significância usando:
que é aproximadamente distribuído como a distribuição t de Student com graus de liberdade sob a hipótese nula.[16] Uma justificação para este resultado se baseia em um argumento de permutação.[17]
Uma generalização do coeficiente de Spearman é útil na situação em que há três ou mais condições, uma quantidade de sujeitos é toda observada em cada uma delas e se prevê que as observações terão uma ordem particular. Por exemplo, cada sujeito deste grupo será avaliado três vezes fazendo a mesma tarefa e se prevê que a performance melhorará a cada avaliação. Um teste da significância da tendência entre condições nesta situação foi desenvolvido por Ellis Batten Page, sendo usualmente chamado de teste de tendência de Page para alternativas ordenadas.[18]
Análise de correspondência baseada no rô de Spearman
[editar | editar código-fonte]A análise de correspondência clássica é um método estatístico que dá um escore para todo valor de duas variáveis nominais. Desta forma, o coeficiente de correlação de Pearson entre eles é maximizado.
Há um equivalente deste método, chamado de análise de correspondência de grau, que maximiza o rô de Spearman e o tau de Kendall.[19]
Ver também
[editar | editar código-fonte]- Coeficiente de correlação de Pearson
- Coeficiente de correlação tau de Kendall
- Desigualdade do rearranjo
Referências
[editar | editar código-fonte]- ↑ Spearman, C. (1904). «The Proof and Measurement of Association between Two Things». The American Journal of Psychology. 15 (1): 72–101. doi:10.2307/1412159
- ↑ Kendall, Maurice George; Gibbons, Jean Dickinson (1990). Rank correlation methods (em inglês). [S.l.]: E. Arnold
- ↑ Lehman, Ann; O'Rourke, Norm; Hatcher, Larry; Stepanski, Edward (2013). JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition (em inglês). [S.l.]: SAS Institute. ISBN 9781612906034
- ↑ Myers, Jerome L.; Well, Arnold D.; Jr, Robert F. Lorch (11 de janeiro de 2013). Research Design and Statistical Analysis: Third Edition (em inglês). [S.l.]: Routledge. ISBN 9781135811631
- ↑ Daniel, Wayne W. (30 de junho de 2000). Applied Nonparametric Statistics (em inglês). [S.l.]: Duxbury. ISBN 9780534381943
- ↑ Hollander, Myles; Wolfe, Douglas A.; Chicken, Eric (25 de novembro de 2013). Nonparametric Statistical Methods (em inglês). [S.l.]: John Wiley & Sons. ISBN 9781118553299
- ↑ Spiegel, M. R. (1985). Estatistica; resumo da teoria 875 problemas resolvidos 619 problemas propostos. [S.l.]: Fundacao CARGILL
- ↑ Dodge, Yadolah (15 de abril de 2008). The Concise Encyclopedia of Statistics (em inglês). [S.l.]: Springer Science & Business Media. ISBN 9780387317427
- ↑ Yule, George Udny; Kendall, Maurice (1950). An Introduction to the Theory of Statistics. G. Udny Yule, ... and M.G. Kendall, ... 14th Edition Revised and Enlarged (em inglês). [S.l.]: C. Griffin
- ↑ Piantadosi, Julia; Howlett, Phil; Boland, John (maio de 2007). «Matching the grade correlation coefficient using a copula with maximum disorder». Journal of Industrial and Management Optimization. 3 (2). Consultado em 19 de julho de 2017. Arquivado do original em 3 de dezembro de 2013
- ↑ Corder, Gregory W.; Foreman, Dale I. (20 de setembro de 2011). Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach (em inglês). [S.l.]: John Wiley & Sons. ISBN 9781118211250
- ↑ Bonett, Douglas G.; Wright, Thomas A. (1 de março de 2000). «Sample size requirements for estimating pearson, kendall and spearman correlations». Psychometrika (em inglês). 65 (1): 23–28. ISSN 0033-3123. doi:10.1007/BF02294183
- ↑ Caruso, John C.; Cliff, Norman (2 de julho de 2016). «Empirical Size, Coverage, and Power of Confidence Intervals for Spearman's Rho». Educational and Psychological Measurement (em inglês). 57 (4): 637–654. doi:10.1177/0013164497057004009
- ↑ Choi, S. C. (1 de dezembro de 1977). «Tests of equality of dependent correlation coefficients». Biometrika. 64 (3): 645–647. ISSN 0006-3444. doi:10.1093/biomet/64.3.645
- ↑ Fieller, E. C.; Hartley, H. O.; Pearson, E. S. (1 de dezembro de 1957). «TESTS FOR RANK CORRELATION COEFFICIENTS. I». Biometrika. 44 (3-4): 470–481. ISSN 0006-3444. doi:10.1093/biomet/44.3-4.470
- ↑ Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (7 de fevereiro de 2002). Numerical Recipes in C++: The Art of Scientific Computing (em inglês). [S.l.]: Cambridge University Press. ISBN 9780521750332
- ↑ The Advanced Theory of Statistics. Vol. 2: Inference and: Relationsship (em inglês). [S.l.]: Griffin. 1973
- ↑ Page, Ellis Batten (1 de março de 1963). «Ordered Hypotheses for Multiple Treatments: A Significance Test for Linear Ranks». Journal of the American Statistical Association. 58 (301): 216–230. ISSN 0162-1459. doi:10.2307/2282965
- ↑ Kowalczyk, Teresa; Pleszczynska, Elzbieta; Ruland, Frederick (6 de dezembro de 2012). Grade Models and Methods for Data Analysis: With Applications for the Analysis of Data Populations (em inglês). [S.l.]: Springer. ISBN 9783540399285
Ligações externas
[editar | editar código-fonte]- Cópulas vs. Correlações por Eric Torkia para Crystal Ball Analytics Services (em inglês)
- Tabela de valores críticos de ρ para significância com amostras pequenas no portal da Universidade de Sussex (em inglês)
- Fórmula usada quando há empates no VassarStats (em inglês)
- Coeficiente de correlação de postos de Spearman no Handbook of Biological Statistics (em inglês)