Conexão de Levi-Civita

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em geometria diferencial, numa variedade Riemanniana, há uma conexão canônica chamada conexão de Levi-Civita, por vezes, também conhecida como derivada covariante[1]. Como uma conexão no fibrado tangente, a conexão de Levi-Civita fornece um método bem definido para diferenciar campos vetoriais, formulários ou qualquer outro tipo de tensor[2][3]. O teorema que afirma a existência da conexão de Levi-Civita é chamado: Teorema fundamental da geometria Riemanniana[4]

História[editar | editar código-fonte]

No começo da geometria diferencial surgiram com Gauss diversos conceitos geométricos importantes que foram generalizados por muitos matemáticos, destacando-se entre eles Georg Friedrich Bernhard Riemann, o fundador da chamada Geometria Riemanniana, de onde surgiram os objetos matemáticos "Conexões e Curvatura[5]. O conceito de conexão surgiu dos trabalhos de Elwin Bruno Christoffel com a criação da chamada conexão de Christoffel. Posteriormente, as conexões foram estudadas por Tullio Levi-Civita que demonstrou a existência da conexão de Levi-Civita. Além disso, Levi-Civita explorou a relação entre o transporte paralelo e a curvatura para desenvolver a noção moderna de holonomia.

Prova[editar | editar código-fonte]

Sejam V,W campos de vetores numa variedade semi-Riemanniana, em cada ponto p ∈ M queremos calcular taxa de variação de W na direção de Vp. Isso pode ser feito naturalmente em n como a derivação de um campo com relação ao outro. No contexto de variedades, devemos introduzir o conceito de conexão[6][7]

Referências

  1. Levi-Civita, T.; Ricci, G. (1900), "Méthodes de calcul différential absolu et leurs applications", Math. Ann. B 54: 125–201, doi:10.1007/BF01454201
  2. Jurgen Jost, Riemannian Geometry and Geometric Analysis, (2002) Springer-Verlag, Berlin. ISBN 3-540-42627-2
  3. Connection por Todd Rowland "MathWorld"
  4. Fundamental Theorem of Riemannian Geometry Todd Rowland
  5. Eves, Howard: Introdução à História da Matemática. São Paulo : Editora da UNICAMP, 2004. ISBN 85-268-0657-2
  6. Tullio Levi-Civita "Nozione di parallelismo in una varietà qualunque e consequente specificazione geometrica della curvatura Riemanniana" Rend. Circ. Mat. Palermo| volume 42, pgs 73–205 | 1917
Ícone de esboço Este artigo sobre geometria é um esboço. Você pode ajudar a Wikipédia expandindo-o.