Corpo (matemática)

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde novembro de 2013). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Em matemática, um corpo ou campo é um anel comutativo com unidade em que todo elemento diferente de 0 possui um elemento inverso com relação à multiplicação.

Definição formal[editar | editar código-fonte]

Mais formalmente, um anel comutativo com unidade é chamado de corpo se:

Resulta da comutatividade de que o da definição anterior também satisfaz a condição Por outro lado, só pode haver um único naquelas condições. De facto, se e forem tais que então

Este elemento designa-se por inverso de e representa-se por

Um corpo não tem divisores de zero. Efectivamente, se e forem dois elementos de diferentes de então  ≠  pois

 ≠ 0.

Mas se se tivesse então ter-se-ia

Exemplos e contra-exemplos de Corpos[editar | editar código-fonte]

Exemplos[editar | editar código-fonte]

  • Os números complexos [1] e seus subcorpos, entre os quais:
  • o menor corpo, formado pelos números e em que Este conjunto com as operações de adição e multiplicação satisfaz todos os axiomas de anel, é comutativo e tem unidade. Além disso, como em qualquer anel com unidade, é o elemento inverso de
  • onde p é um número primo. Como conjunto,

A adição e a multiplicação são assim definidas: se se quer adicionar (respectivamente multiplicar) em então (respectivamente ) é o resto da divisão por da adição (respectivamente multiplicação) dos números inteiros e

< H : >

Contra-exemplos[editar | editar código-fonte]

  • quando não é um número primo, não é um corpo, pois tem divisores de zero.
  • Os quaterniões não formam um corpo, porque a multiplicação não é comutativa.

Característica[editar | editar código-fonte]

Dado um corpo considere-se a sucessão … Há duas possibilidades.

  • Todos os termos da sucessão são diferentes de Diz-se então que o corpo tem característica
  • Alguns termos da sucessão são iguais a Diz-se então que o corpo tem característica onde é o menor número natural tal que  ···  ( vezes) = 0.

O corpo dos números complexos e os seus subcorpos têm característica para cada número primo o corpo Zp tem característica

Se um corpo tem característica então é um número primo. De facto, a função

é tal que se e são números naturais, então Por outro lado, se tiver característica então Se não fosse primo, tinha-se com e números naturais menores do que pelo que Mas então ou Isto é impossível pois, por definição, é o menor número natural tal que

Se um corpo F tem característica p (em que p é zero ou um número primo), então existe um subcorpo e um isomorfismo de corpos (p = 0) ou (p primo). Além disso, o subcorpo K e o isomorfismo φ são únicos.

Corpos de fracções[editar | editar código-fonte]

Ver artigo principal: Corpo de frações

Seja um anel comutativo com unidade e sem divisores de zero. Então é possível mergulhar num corpo Basta definir em  ×  \  a seguinte relação de equivalência ∼:

 ∼  se e só se

Se for um elemento de  ×  \  seja a sua classe de equivalência. Seja o conjunto das classes de equivalência. Podem-se então definir os seguintes elementos de e as seguintes operações:

Então é um corpo e a função

é uma função injectiva de em O corpo designa-se por corpo de fracções do anel [3]

Exemplos:

  • O corpo dos números racionais é o corpo de frações do anel dos números inteiros.
  • Seja um aberto conexo não vazio de C. As funções holomorfas de em C formam um anel comutativo com unidade e sem divisores de zero. O seu corpo de fracções é o corpo das funções meromorfas de em C.

Notas e referências

  1. a b c Jacobson, 1985, p. 87–91
  2. Os números surreais, na sua formulação original, não formam um conjunto. Consequente, não são um corpo. No entanto, esta limitação pode ser ultrapassada, limitando a construção dos números surreais a um Universo de Grothendieck.
  3. Jacobson, 1985, p. 116–117
  • Jacobson, Nathan (1985). Basic algebra (em inglês) 1 (New York: W. H. Freeman and Company). ISBN 0716714809. 

Ver também[editar | editar código-fonte]