Saltar para o conteúdo

Desigualdade de Jensen

Origem: Wikipédia, a enciclopédia livre.
A desigualdade de Jensen generaliza a afirmação de que uma linha secante de uma função convexa está acima de seu gráfico
Visualizando a convexidade e a desigualdade de Jensen

Em matemática, a desigualdade de Jensen, em homenagem ao matemático dinamarquês Johan Jensen, relaciona o valor de uma função convexa de uma integral com a integral da função convexa. Ela foi provada por Jensen em 1906,[1] com base em uma demonstração anterior da mesma desigualdade para funções duplamente diferenciáveis ​​por Otto Hölder em 1889.[2] Dada sua generalidade, a desigualdade aparece em muitas formas, dependendo do contexto, algumas das quais são apresentadas abaixo. Em sua forma mais simples, a desigualdade afirma que a transformação convexa de uma média é menor ou igual à média aplicada após a transformação convexa; é um corolário simples que o oposto é verdadeiro para transformações côncavas.[3]

A desigualdade de Jensen generaliza a afirmação de que a linha secante de uma função convexa está acima do gráfico da função, que é a desigualdade de Jensen para dois pontos: a linha secante consiste em médias ponderadas da função convexa (for t ∈ [0,1]),

enquanto o gráfico da função é a função convexa das médias ponderadas,

Assim, a desigualdade de Jensen é

No contexto da teoria da probabilidade, geralmente é declarado da seguinte forma: se X é uma variável aleatória e φ é uma função convexa, então

A diferença entre os dois lados da desigualdade, , é chamado de intervalo de Jensen.[4]

Referências

  1. Jensen, J. L. W. V. (1906). «Sur les fonctions convexes et les inégalités entre les valeurs moyennes». Acta Mathematica. 30 (1): 175–193. doi:10.1007/BF02418571Acessível livremente 
  2. Guessab, A.; Schmeisser, G. (2013). «Necessary and sufficient conditions for the validity of Jensen's inequality». Archiv der Mathematik. 100 (6): 561–570. MR 3069109. doi:10.1007/s00013-013-0522-3 
  3. Dekking, F.M.; Kraaikamp, C.; Lopuhaa, H.P.; Meester, L.E. (2005). A Modern Introduction to Probability and Statistics: Understanding Why and How. Col: Springer Texts in Statistics. London: Springer. ISBN 978-1-85233-896-1. doi:10.1007/1-84628-168-7 
  4. Gao, Xiang; Sitharam, Meera; Roitberg, Adrian (2019). «Bounds on the Jensen Gap, and Implications for Mean-Concentrated Distributions» (PDF). The Australian Journal of Mathematical Analysis and Applications. 16 (2). arXiv:1712.05267Acessível livremente 

Ligações externas

[editar | editar código-fonte]