Diamagnetismo

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Ambox rewrite.svg
Esta página precisa ser reciclada de acordo com o livro de estilo (desde Agosto de 2008).
Sinta-se livre para editá-la para que esta possa atingir um nível de qualidade superior.
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Diamagnetismo é o termo utilizado para designar o comportamento de materiais que são repelidos na presença de campos magnéticos, ao contrário dos materiais paramagnéticos e ferromagnéticos que são atraídos por campos magnéticos.

Uma levitação diamagnética.

O diamagnetismo é um efeito quântico que existe em todos os materiais, mas é tão fraco que normalmente não pode ser observado quando o material possui uma das outras duas propriedades: ferromagnetismo ou paramagnetismo[1]. Ou seja, o diamagnetismo corresponde ao tipo mais fraco de resposta magnética de um sistema[2].A permeabilidade magnética dos materiais diamagnéticos é menor que μ0 (permeabilidade do vácuo) e, na maioria dos materiais, é um efeito fraco que só pode ser detectado através de instrumentos muito sensíveis em ambiente laboratoriais, com exceção dos supercondutores.

As substâncias que têm um comportamento diamagnético predominante são chamadas de materiais diamagnéticos. São aqueles materiais que os não-físicos consideram não magnéticos, tais como água, madeira, a maioria dos compostos orgânicos, como petróleo e alguns plásticos, e muitos metais, incluindo o cobre, especialmente os pesados com muitos elétrons, como o mercúrio, o ouro e o bismuto.

O diamagnetismo é um tipo de magnetismo característico de materiais que se alinham em um campo magnético não uniforme e tem como efeito diminuir o módulo do campo no interior do material.

Esse tipo de magnetismo¹ é observado em substâncias como os cristais iônicos ou os gases nobres, com estrutura eletrônica simétrica e sem momento magnético permanente.

Nos materiais diamagnéticos, os dipolos elementares não são permanentes, sendo que esses materiais não são afetados com a mudança de temperatura e o valor da sua susceptibilidade magnética é tipicamente próximo de milionésimo (10−6) e sempre negativo, devido a Lei de Lenz que afirma que um circuito submetido a um campo magnético externo variável, cria um campo contrário opondo-se a variação deste campo externo[2]. Devido ao valor da susceptibilidade magnética ser negativo, o material sofre uma repulsão, entretanto o efeito é muito fraco, isto é, somente é percebido em campos magnéticos intensos, algumas ordens de grandeza maior do que o campo magnético terrestre.

Todo material diamagnético submetido a um campo magnético externo apresenta um momento dipolar magnético líquido orientado no sentido oposto ao do campo magnético externo. Se o campo magnético externo é não-uniforme, o material diamagnético é repelido da região onde o campo magnético é mais intenso para a região onde o campo magnético é menos intenso.[1]

História[editar | editar código-fonte]

Foi primeiramente observado por Sebald Justinus Brugmans em 1778, ao observar que o bismuto e o antimônio eram repelidos por campos magnéticos. O diamagnetismo foi nominado e estudado por Michael Faraday, em 1845 que, através de seus estudos, concluiu que o diamagnetismo era uma propriedade da matéria, e que todo material respondia de uma forma diamagnética ou de uma forma paramagnética a um campo magnético aplicado a ele.[3]

Materiais[editar | editar código-fonte]

Materiais diamagnéticos como a água, ou materiais que tenham a água como base, tem uma permeabilidade magnética relativa menor ou igual a 1, consequentemente sua susceptibilidade magnética é menor ou igual a zero, já que a susceptibilidade é definida por χv = μv − 1. Isso indica que materiais diamagnéticos são repelidos por campos magnéticos. Contudo, como o diamagnetismo é uma propriedade fraca, seus efeitos não podem ser observados no dia a dia. Por exemplo, a susceptibilidade magnética de diamagnéticos como a água é da ordem de χv = −9.05×10−6 . O material diamagnético mais forte é o bismuto, χv = −1.66×10−4 , mesmo que o grafite pirolítico possa ter susceptibilidade de χv = −4.00×10−4 em um dos planos. Mesmo assim, estes valores são de ordem de magnitude muito inferior ao magnetismo que possuem os materiais paramagnéticos e ferromagnéticos.

Todos os condutores mostram um diamagnetismo mais efetivo quando interagem com um campo magnético que varia no tempo. A força de Lorentz que age nos elétrons faz com que eles se movimentem formando correntes parasitas, que por sua vez produzem um campo magnético induzido no sentido oposto ao campo aplicado.

Supercondutividade[editar | editar código-fonte]

Transição da condutividade normal (esquerda) para a supercondutividade (direita). Durante a transição, o condutor repele o campo magnético e age como um diamagnético perfeito.

Supercondutores são materiais que perdem a resistência a corrente elétrica à corrente elétrica quando estão abaixo de uma determinada temperatura. O supercondutor é um diamagnético perfeito (χv = −1). pois ele repele todos os campos magnéticos (exceto em superfícies muito finas) devido ao Efeito Meissner. Esse efeito, que talvez seja a característica mais famosa dos supercondutores, é a causa da levitação magnética de um ímã, por exemplo, quando é colocado sobre um pedaço de supercondutor. A explicação para o fenômeno está na repulsão total dos campos magnéticos externos pelos supercondutores, o que faz com que o campo magnético interno seja nulo, desde que o campo externo aplicado não seja muito intenso.[4]

Principais materiais diamagnéticos[5] (O valor da susceptibilidade χv é adimensional)
Material χv [x 10−5]
Supercondutor -105
Grafite Pirolítico -40,9
Bismuto -16,6
Mercúrio -2,9
Prata -2,6
Diamante -2,1
Chumbo -1,8
Grafite -1,6
Cobre -1,0
Água -0,91

Teoria[editar | editar código-fonte]

Em um material, normalmente os elétrons se dispõe em órbitas, sem nenhuma resistência entre elas agindo como um loop de corrente. Deste modo, poderia se dizer que em geral os efeitos do diamagnetismo seriam comuns, visto que qualquer campo magnético aplicado gerariam corrente nesses loops em oposição à carga, de um modo similar aos supercondutores, que essencialmente são diamagnéticos perfeitos. Entretanto, como os elétrons são mantidos presos às órbitas pela carga dos prótons e ainda mais pelo Princípio de Exclusão de Pauli, muitos materiais exibem o diamagnetismo mas respondem muito pouco aos campos magnéticos aplicados.

O Teorema de Bohr-Van Leewen[6][7] prova que não pode haver paramagnetismo ou diamagnetismo em um sistema puramente clássico, Porém, a teoria clássica de Paul Langevin para o diamagnetismo nos dá a mesma previsão que a teoria quântica. A teoria clássica é dada abaixo:

Diamagnetismo de Langevin[editar | editar código-fonte]

A teoria do diamagnetismo de Langevin[8] se aplica a materiais que contém átomos O número de revoluções por unidade de tempo é com "cascas fechadas" (ver dielétrico). Um campo elétrico com intensidade B, aplicado a um elétron com carga e e massa m, dá início ao processo de movimento do Raio de Larmor com uma frequência ω = eB / 2m. O número de revoluções por unidade de tempo é ω / 2π. Então a corrente elétrica para um átomo com Z elétrons é (em unidades do SI):

.

O momento magnético de um loop de corrente é igual a corrente vezes a área do loop. Suponha que o campo é alinhado com o eixo z, a área média do loop pode ser dada por π(ρ²) , onde (ρ²) é a raíz quadrada da distância dos elétrons perpendiculares ao eixo z. O momento magnético é, portante:

.

Se a distribuição da carga é esfericamente simétrica, podemos supor que a distribuição das coordenadas x, y, z são independentes e igualmente distribuídas. Então . Onde. é a raíz quadrada da distância dos elétrons até o núcleo, portanto . Se n é o número de átomos por unidade de volume, a susceptibilidade magnética do volume é, em unidades do SI:

Demonstrações[editar | editar código-fonte]

Curvando a superfície da água[editar | editar código-fonte]

Se um imã forte é coberto com uma camada fina de água em comparação ao diâmetro do imã, então o campo magnético do imã irá repelir a água, gerando uma pequena curvatura na superfície e que pode sr que pode ser vista pelo seu reflexo.[9]

Levitação[editar | editar código-fonte]

Um sapo vivo flutua em um pequeno solenoide de 32mm de diâmetro, com um campo magnético de aproximadamente 16 Tesla.

Materiais diamagnéticos podem sofrer um efeito de levitação em equilíbrio estável quando submetidos a um campo magnético, sem consumir energia para isso. O Teorema de Earnshaw parece impossibilitar a possibilidade da levitação magnética estática, porém o teorema aplica-se apenas a objetos com susceptibilidade magnética positiva como os ferromagnéticos (que possuem um momento positivo permanente) e os paramagnéticos (que induzem um momento positivo), Estes materiais são atraídos pelo campo máximo, que não podem existir no espaço. Já os diamagnéticos (que induzem momento negativo) são atraídos pelo campo mínimo, que podem existir no espaço livre.[10]

Um pequeno pedaço fino de grafite pirolítico, um diamagnético forte, pode ser colocado flutuando de modo estável em um campo magnético,gerado por um imã permanente de Terra-rara. Este experimento pode ser feito com todos os componentes em temperatura ambiente, tornando assim um exemplo excelente de demonstração do diamagnetismo.

A universidade católica Radboud Universiteit Nijmegen conduziu um experimento onde foram postas em levitação água e outras substâncias, em particular um pequeno sapo vivo (ver figura).[11]

Em setembro de 2009 a NASA, mais precisamente o Laboratório de Propulsão a Jato, em Pasadena, Califórnia, anunciou que concluiu com sucesso um experimento levitando ratos usando supercondutores magnéticos[12]. Como ratos são biologicamente muito mais similares a seres humanos do que sapos, o feito foi de grande importância e deve gerar novos experimentos apesar dos efeitos da microgravidade em ossos e massa muscular.

Ver também[editar | editar código-fonte]

Referências

  1. a b HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. 2007, LTC, p.338-340
  2. a b RIBEIRO, 2000, p.301
  3. Jackson, Roland (2 de outubro de 2015). «John Tyndall and the Early History of Diamagnetism». Annals of Science. 72 (4): 435–489. ISSN 0003-3790. PMC 4524391Acessível livremente. PMID 26221835. doi:10.1080/00033790.2014.929743 
  4. Branício, Paulo S. (29 de outubro de 2001). «Introduction to the superconductivity, its applications and the mini-revolution provoked by the rediscovered of the MgB2: a didactic approach». Revista Brasileira de Ensino de Física. 23 (4): 381–390. ISSN 1806-1117 
  5. «Magnetic Properties of Solids». hyperphysics.phy-astr.gsu.edu. Consultado em 25 de novembro de 2018 
  6. Savoie, Baptiste (1 de outubro de 2015). «A rigorous proof of the Bohr-van Leeuwen theorem in the semiclassical limit» 
  7. «Bohr–van Leeuwen theorem». Wikipedia (em inglês). 7 de junho de 2018 
  8. Langevin, Paul (1905). Sur la théorie du magnétisme. França: Journal de Physique Théorique et Appliquée 
  9. «SCIENCE HOBBYIST: neodymium supermagnets, list of demonstrations». amasci.com. Consultado em 25 de novembro de 2018 
  10. Carmona, Humberto. «Levitação Magnética» (PDF). Universidade Estadual do Ceará 
  11. «Diamagnetic Levitation». High Field Magnet Laboratory (em neerlandês) 
  12. Sauser, Brittany. «Magnetically Levitating Mice». MIT Technology Review (em inglês) 

Ligações Externas[editar | editar código-fonte]