Distribuição de Boltzmann

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Text document with red question mark.svg
Este artigo ou secção contém fontes no fim do texto, mas que não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (desde setembro de 2016)
Por favor, melhore este artigo introduzindo notas de rodapé citando as fontes, inserindo-as no corpo do texto quando necessário.

Em física a Distribuição de Boltzmann permite calcular a função distribuição para um número fracionário de partículas Ni / N ocupando um conjunto de estados i cada um dos quais tem energia Ei:

onde é a constante de Boltzmann, T é a temperatura (admitida como sendo uma quantidade precisamente bem definida), é a degeneração, ou número de estados tendo energia , N é o total do número de partículas:

e Z(T) é chamada função partição, a qual pode ser tratada como sendo igual a

Alternativamente, para um sistema único em uma temperatura bem definida, ela dá a probabilidade deste sistema em seu estado específico. A distribuição de Boltzmann aplica-se somente à partículas em uma suficiente alta temperatura e baixa densidade nas quais efeitos quânticos possam ser ignorados, e cujas partículas obedeçam a estatística de Maxwell–Boltzmann. (Veja este artigo para uma derivação da distribuição de Boltzmann.)

A distribuição de Boltzmann é frequentemente expressa em termos de β = 1/kT aonde β refere-se ao beta termodinâmico. O termo ou e, o qual dá a relativa probabilidade (não normalizada) de um estado, é chamada factor de Boltzmann e aparece frequentemente no estudo da física e química.

Quando a energia é simplesmente a energia cinética da partícula

então a distribuição corretamente dá a distribuição de Maxwell-Boltzmann das velocidades das moléculas do gás, previamente previstas por Maxwell em 1859. A distribuição de Boltzmann é, entretanto, muito mais geral. Por exemplo, ela prediz a variação da densidade de partículas num campo gravitacional em relação à altitude, se . De fato a distribuição aplica-se sempre que as considerações quânticas possam ser ignoradas.

Em alguns casos, uma aproximação contínua pode ser usada. Se há g(EdE estados com energia E a E + dE, quando a distribuição de Boltzmann prediz uma probabilidade de distribuição para a energia:

Quando g(E) é chamado densidade de estado se o espectro de energia é contínuo.

Partículas clássicas com esta distribuição de energia são ditas obedientes à estatística de Maxwell–Boltzmann.

No limite clássico, i.e. em grandes volumes de E/kT ou às menores densidades de estados — quando funções de onda de partículas praticamente não se sobrepõe, tanto a distribuição Bose–Einstein ou a Fermi–Dirac tornam-se a distribuição de Boltzmann.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.