Distribuição de Cantor

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

A Distribuição de Cantor é a distribuição de probabilidade cuja função de distribuição cumulativa é a função de Cantor.

Esta distribuição não tem nem uma função de densidade de probabilidade , nem uma função de massa de probabilidade , já que não é absolutamente contínua com respeito a medida de Lebesgue, nem tem qualquer ponto de massas. Não é nem uma distribuição de probabilidade absolutamente contínua e nem uma distribuição de probabilidade absolutamente discreta , e nem é uma mistura destes. Pelo contrário, é um exemplo de uma distribuição singular.

Sua função de distribuição cumulativa às vezes é referida como escadaria do diabo, embora esse termo tem um significado mais geral. [1]


Caracterização[editar | editar código-fonte]

O suporte da distribuição Cantor é o Conjunto de Cantor, em si a intersecção dos (infinitamente contáveis) conjuntos.

A distribuição Cantor é a distribuição de probabilidade única em que para qualquer Ct (t ∈ { 0, 1, 2, 3, ... }), a probabilidade de um determinado intervalo de Ct contendo a variável aleatória Cantor-distribuída é idêntica 2-t em cada um dos intervalos de 2t.

Momentos[editar | editar código-fonte]

É fácil de ver por simetria que, para uma variável aleatória X tendo esta distribuição, o seu valor esperado E(X) = 1/2, e que todos os momentos centrais ímpares de X são 0.

A lei da variância total pode ser usada para localizar a variância var(X), como se segue. Para o conjunto acima C1, seja Y = 0 se X ∈ [0,1/3], e 1 se X ∈ [2/3,1]. Então:

A partir disso nós temos:

Uma fórmula fechada para qualquer momento central par pode ser encontrada obtendo primeiramente os cumulantes pares

ondeB2n é o 2n-ésimo número de Bernoulli, e depois colocando os momentos em função dos cumulantes. [2]

Referências

  1. V.N. Bolotov (2001). Cantor Distribution (PDF) (Tese). IEMR - Institute of Electromagnetic Research. Consultado em 18 de fevereiro de 2014. 
  2. Barry C. Arnold. «Cantor order statistics: without applications» (PDF). 7th IASC-ARS. Consultado em 18 de fevereiro de 2014. 

Ligações externas[editar | editar código-fonte]