Efeito fotoelétrico

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, comprometendo a sua verificabilidade (desde janeiro de 2013).
Por favor, adicione mais referências inserindo-as no texto. Material sem fontes poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)
O efeito fotoelétrico

O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1] Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.

De acordo com o modelo ondulatório da luz, as expectativas eram:

Qualquer superfície metálica deveria ejetar elétrons quando excitada com uma radiação eletromagnética, de qualquer frequência, desde que essa radiação demorasse um tempo suficiente para o átomo armazenar energia e liberar, posteriormente, esse elétron; Os elétrons que giram à volta do núcleo atômico são aí mantidos por forças de atração. Se a estes for fornecida energia suficiente, eles abandonarão as suas órbitas. O efeito fotoelétrico implica que, normalmente sobre metais, se faça incidir um feixe de radiação com energia superior à energia de remoção dos elétrons do metal, provocando a sua saída das órbitas: sem energia cinética (se a energia da radiação for igual à energia de remoção) ou com energia cinética, se a energia da radiação exceder a energia de remoção do elétrons. [1]

Para testar essas ideias, os cientistas montaram um experimento.[1]

A grande dúvida que se tinha a respeito do efeito fotoelétrico era que quando se aumentava a intensidade da luz, ao contrário do esperado, a luz não arrancava os elétrons do metal com maior energia cinética. O que acontecia era que uma maior quantidade de elétrons era ejetado.[1]

Por exemplo, a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal. Na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas.

Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.

Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

A explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein, e em 1921 deu ao cientista alemão o prêmio Nobel de Física.

Equações[editar | editar código-fonte]

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

Algebricamente:

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  • é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  • é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.

Notas:

Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

Aplicações[editar | editar código-fonte]

  • Controle Remoto

Os controles remotos, games e artifícios digitais estão cada vez mais presentes nessa era considerada digital, então é viável e interessante que o Efeito Fotoelétrico seja observado, para uma melhor a compreensão, através de um simulador. O controle remoto, por exemplo, pode ser associado à fonte de luz presente no simulador, pois emite um feixe de luz de determinada frequência que aciona o dispositivo fotossensível presente nos aparelhos controlados por ele [5].

  • Cinema

Graças ao efeito fotoelétrico, tornou-se possível o cinema falado, assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir uma maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujos funcionamentos se assentam no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que pode fazer qualquer operário, permitem acender e desligar automaticamente a iluminação de ruas, os faróis, etc. Tudo isto se tornou possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica [6]

  • Visão Noturna

O equipamento de visão noturna economicamente mais acessível, mais leve, menor, mais ergonométrico, mais confiável, com campo de visão maior, com alto desempenho sob baixas condições de iluminação e que possa ser utilizado tanto de noite quanto de dia atualmente é feito com Tubos Intensificadores de Imagem (TII). Os intensificadores de luz baseiam-se no efeito fotoelétrico demonstrado por Albert Einstein em 1905, no qual um fóton ao incidir sobre determinados materiais é capaz de provocar a emissão de um elétron, denominado fotoelétron. Este efeito fotoelétrico ocorre justamente no fotocatodo. Portanto, a luz (fótons) que chega(m) ao fotocatodo é(são) convertida(os) em fotoelétrons. Estes fotoelétrons são acelerados pelo campo elétrico e para os TIl da 2ª geração em diante são multiplicados na placa de microcanais. Esta multiplicação de elétrons ocorre da seguinte forma: o campo elétrico existente entre o fotocatodo e a placa de microcanais direciona os elétrons para a placa, de modo que ao entrarem nos microcanais colidem com as paredes semicondutoras. Esta colisão gera elétrons secundários que caminham dentro dos microcanais sob influência de um intenso campo elétrico aplicado ao longo dos microcanais. Mais colisões geram mais elétrons e este efeito de avalanche produz o ganho (amplificação) do TIl. Quando alcançam o final da placa de microcanais, os elétrons são acelerados através de uma pequena separação até atingirem a tela de fósforo. Na tela de fósforo os elétrons multiplicados colidem com alta energia e são convertidos em fótons, gerando uma imagem. Após a tela de fósforo está a janela de fibras ópticas, que conduz a imagem gerada para a posição focal desejada pelo restante do sistema óptico, e, quando necessário, inverte a imagem [7].

Referências

  1. a b c d e Barros Lima, Gielton (2012). Física, 3ª série: ensino médio: revisional. Belo Horizonte: Editora Educacional. p. 247. ISBN 978-85-7932-512-0 
  2. Sears, Francis W., Mark W. Zemansky e Hugh D. Young, University Physics, 6 edição, Addison-Wesley, 1983, pp. 843-4. ISBN 0-201-07195-9.
  3. The American journal of science. New Haven : J.D. & E.S. Dana. 1880, p. 234
  4. Weisstein, Eric W., "Eric Weisstein's World of Physics", 2007, Eric Weisstein's World of Science, Wolfram Research
  5. FRANÇA, Claudiely Stresser Machado de. Física moderna no ensino médio: uma atividade para o ensino do efeito fotoelétrico. In: Congresso Nacional de Educação – EDUCERE, 12., 2015, Curitiba. Anais do XII Congresso Nacional de Educação – EDUCERE, III Seminário Internacional de Representações Sociais, Subjetividade e Educação – SIRSSE, IX Encontro Nacional Sobre Atendimento Escolar Hospitalar - I Congresso Nacional Sobre o Atendimento Pedagógico ao Escolar em Tratamento de Saúde – APETS. Curitiba: Desconhecido, 2015, p. 27743-27752
  6. COSTA, Bruno Henrique Matos da. Uma aula sobre o efeito fotoelétrico para o ensino médio. Rio de Janeiro: [s.n.], 2005. 42 p.
  7. DEMENICES, L.S.; CORDEIRO, M.C.R. Visão noturna e o princípio de intensificação de luz residual. Revista militar de ciência e tecnologia. [s.l.], v.18, p. 72-105, 2001

Ver também[editar | editar código-fonte]