Espécie reactiva de oxigénio

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Portal A Wikipédia possui o portal:

As espécies reativas de oxigênio são compostos químicos resultantes da ativação ou redução do oxigênio molecular (dioxigénio, O2) ou derivados dos produtos da redução. As principais espécies reativas de oxigênio são: o anião radical superóxido (O2•-), o peróxido de hidrogénio (H2O2), o dioxigénio singleto (1O2) e o radical hidroxila (HO.). O peroxinitrito (ONOO-) é considerado por uns autores uma espécie reativa de oxigênio e por outros uma espécie reativa de azoto.

Origem[editar | editar código-fonte]

O dioxigênio pode sofrer redução química, isto é, pode aceitar elétrons, que são introduzidos nas orbitais antiligantes da molécula. A redução univalente (um electrão de cada vez) origina superóxido e peróxido:

O2 → O2•- → O22-

A redução afeta a estabilidade da ligação entre os dois átomos de oxigênio, diminuindo-a. Em determinadas condições, o peróxido decompõe-se em dois radicais hidroxilo através de clivagem homolítica da molécula.

O dioxigénio singuleto resulta da excitação da molécula de O2, e não da sua redução.

O peroxinitrito é o produto da condensação dos radicais superóxido e óxido nítrico, sendo por isso considerada tanto uma espécie reativa de oxigênio como de azoto.

Atividade biológica[editar | editar código-fonte]

Os organismos expostos ao oxigênio (como os humanos) produzem espécies reativas de oxigênio no seu metabolismo normal. Em determinadas situações patológicas, a produção destas espécies aumenta. Em ambas as situações ocorre o chamado stress oxidativo: as espécies reativas de oxigênio são normalmente (mas nem sempre) poderosos agentes oxidantes que danificam todos os tipos de estrutura celular, desde lípidos membranares até ao DNA.

Principais espécies reativas de oxigênio[editar | editar código-fonte]

Superóxido[editar | editar código-fonte]

A molécula do superóxido, usando a notação de Lewis. A vermelho, os electrões desemparelhados que conferem a reactividade a esta espécie.
Ver artigo principal: superóxido

O anião radical superóxido (O2•-) resulta da redução do dioxigénio com um electrão. A molécula toma então uma carga negativa e torna-se radicalar. Como tal, o superóxido é mais polar que o dioxigénio, não atravessando membranas facilmente.

O superóxido é produzido em pequenas quantidades na cadeia respiratória aeróbia. Também é produzido por macrófagos como agente antibacteriano. Algumas enzimas têm o superóxido como intermediário reacional ou mesmo produto final.

Os principais danos causados pelo superóxido em sistemas biológicos são a destruição de centros metálicos de proteínas, oxidação de cadeias laterais de aminoácidos e a formação de outras espécies oxidativas, como o radical hidroxilo e o peroxinitrito.

Peróxido de hidrogênio[editar | editar código-fonte]

A molécula do peróxido de hidrogénio. Os átomos de oxigénio estão representados por esferas vermelhas e os de hidrogénio por esferas brancas.
Ver artigo principal: peróxido de hidrogénio

O peróxido de hidrogênio (H2O2) não é, por si só, muito reativo, mas é o precursor direto do radical hidroxilo, a espécie reativa de oxigênio mais perigosa que se conhece.

Como é uma molécula relativamente apolar, o H2O2 pode atravessar membranas por difusão simples, reagindo localmente com iões metálicos como o ferro(II) e o cobre(I) através da chamada reacção de Fenton. Nesta reacção ocorre a formação do radical hidroxilo. Este mecanismo é responsabilizado por danos encontrados no DNA em situações de stress oxidativo.

Dioxigénio singuleto[editar | editar código-fonte]

Ver artigo principal: dioxigénio

O dioxigénio singuleto (1O2), frequentemente denominado apenas oxigênio singuleto, resulta da excitação da molécula de dioxigénio, sem ocorrer a sua ionização. O dioxigénio (no estado fundamental) é excitado por moléculas previamente excitadas pela luz, numa reacção conhecida como fotossensibilização. Também pode ser produzido em determinadas reações enzimáticas, sem a intervenção da luz.

O 1O2 pode reagir com biomoléculas adicionando-se a ligações duplas (como por exemplo em ácidos gordos insaturados) ou por transferência de energia (por exemplo, eliminando radicais livres necessários para a catálise de algumas enzimas).

Radical hidroxilo[editar | editar código-fonte]

Ver artigo principal: Hidroxila

O radical hidroxila ou hidroxilo (HO.) é uma espécie radicalar e a mais reativa de todas as espécies reativas de oxigênio. Por essa razão, o local mais afetado pelo hidroxilo é a zona onde esta espécie é formada. Este radical é formado principalmente através da reação de Fenton, pela clivagem homolítica do peróxido de hidrogênio ou pela radiólise da molécula de água.

Os principais alvos da ação do radical hidroxilo são o DNA (que sofre danos nas suas bases, levando à quebra da dupla cadeia) e os ácidos gordos insaturados (que sofrem peroxidação).

Stress oxidativo[editar | editar código-fonte]

Ver artigo principal: Stress oxidativo

Stress oxidativo é um termo genérico dado à situação em que existe um desequilíbrio entre espécies oxidantes e redutoras no meio intracelular, com predominância das primeiras. A produção de espécies reativas de oxigênio causa stress oxidativo. Alguns marcadores biológicos do stress oxidativo são a presença de danos característicos das espécies reativas de oxigênio e o aumento da quantidade de espécies oxidadas como o NAD+ ou ligações dissulfureto em proteínas.

Defesas enzimáticas[editar | editar código-fonte]

Sendo a produção de espécies reativas de oxigênio uma consequência natural do metabolismo aeróbio, as células possuem enzimas que desintoxicam estas espécies. A superóxido dismutase elimina o superóxido por dismutação; o peróxido de hidrogênio é eliminado por peroxidases como a catalase e a glutationa peroxidase. Não se conhece nenhuma enzima que elimine o radical hidroxilo, pelo que este é evitado pela eliminação dos seus precursores. Outras proteínas que participam na captura e transporte de iões metálicos e na redução química de estruturas celulares oxidadas são também importantes no combate ao stress oxidativo.