Espaço de De Sitter

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Animação de um universo de Sitter

Em matemática e física, um espaço de De Sitter é o análogo do espaço de Minkowski, ou de uma variedade quadrimensional de espaço-tempo, de uma esfera no comum espaço euclidiano. Também do ponto de vista geométrico, em certas classes de variedades lorentzianas, os espaços de Sitter e anti-de Sitter são os seus parentes mais próximos.[1] Isto significa que o espaço de de Sitter pode ser construído independentemente de qualquer teoria gravitacional, sendo portanto mais fundamental do que a equação de Einstein. Consequentemente, torna-se possível construir uma relatividade especial baseada no grupo de de Sitter, que e o grupo cinemático do espaço de de Sitter.[2] O espaço de De Sitter tem curvatura negativa constante -12/R2 (o sinal depende de convenções) e reproduz (após uma renormalização) o espaço-tempo de Minkowski no limite da curvatura zero.[3]

Definição[editar | editar código-fonte]

O espaço de De Sitter pode ser definida como uma subvariedade de um espaço de Minkowski de uma dimensão superior. Tome o espaço de Minkowski R1,n com a métrica padrão:

espaço de de Sitter é o subvariedade descrita pela hiperbolóide de uma folha

onde é uma constante diferente de zero com as dimensões de comprimento. A métrica no espaço de Sitter é a métrica induzida da métrica de Minkowski ambiente.

Ver também[editar | editar código-fonte]

Referências

  1. The de Sitter and anti-de Sitter Sightseeing Tour por Ugo Moschella, no "Seminaire Poincare 1" (2005)
  2. AVI, Lucas Lolli. Relatividade restrita de De Sitter: uma abordagem cinemática 44 f. - Universidade Estadual Paulista, Instituto de Física Teórica, (2010)
  3. Transitividade e Movimento em Relatividade de de Sitter por Almeira del C. Sampson publicado pela UNESP
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.