Número perfeito: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Nakinn (discussão | contribs)
m Foram revertidas as edições de 187.180.18.82 (usando Huggle) (3.1.19)
Linha 3: Linha 3:


== Números perfeitos pares ==
== Números perfeitos pares ==
O IX Livro dos Elementos de [[Euclides]] contem a definição de números perfeitos e a seguinte proposição: 'Se tantos números quantos se queira começando a partir da unidade forem dispostos continuamente numa proporção duplicada até que a soma de todos resultee num número primo, e se a soma multiplicada pelo último origina algum número, então o produto será um número perfeito'. Em linguagem matemáticas temos
O IX Livro dos Elementos de [[Euclides]] contem a definição de números perfeitos e a seguinte proposição: 'Se tantos números quantos se queira começando a partir da unidade forem dispostos continuamente numa proporção duplicada até que a soma de todos resulte num número primo, e se a soma multiplicada pelo último origina algum número, então o produto será um número perfeito'. Em linguagem matemáticas temos
que se 2<sup>''n''</sup>&nbsp;−&nbsp;1 é um [[número primo]] então a fórmula 2<sup>''n''−1</sup>(2<sup>''n''</sup>-1) resulta em um número perfeito.
que se 2<sup>''n''</sup>&nbsp;−&nbsp;1 é um [[número primo]] então a fórmula 2<sup>''n''−1</sup>(2<sup>''n''</sup>-1) resulta em um número perfeito.
Os gregos antigos estavam limitados aos quatro primeiros dados pela fórmula de Euclides 2<sup>''n''−1</sup>(2<sup>''n''</sup>−1):
Os gregos antigos estavam limitados aos quatro primeiros dados pela fórmula de Euclides 2<sup>''n''−1</sup>(2<sup>''n''</sup>−1):

Revisão das 02h46min de 26 de abril de 2016

Em Matemática, um número perfeito é um número inteiro para o qual a soma de todos os seus divisores positivos próprios (excluindo ele mesmo) é igual ao próprio número[1].Por exemplo, o número 28 é , pois: . Todo número perfeito é um número triangular, bem como um número hexagonal.

Números perfeitos pares

O IX Livro dos Elementos de Euclides contem a definição de números perfeitos e a seguinte proposição: 'Se tantos números quantos se queira começando a partir da unidade forem dispostos continuamente numa proporção duplicada até que a soma de todos resulte num número primo, e se a soma multiplicada pelo último origina algum número, então o produto será um número perfeito'. Em linguagem matemáticas temos que se 2n − 1 é um número primo então a fórmula 2n−1(2n-1) resulta em um número perfeito. Os gregos antigos estavam limitados aos quatro primeiros dados pela fórmula de Euclides 2n−1(2n−1):

para n = 2:   21(22 − 1) = 6
para n = 3:   22(23 − 1) = 28
para n = 5:   24(25 − 1) = 496
para n = 7:   26(27 − 1) = 8.128

Os matemáticos da Antiguidade fizeram várias afirmações sobre os números perfeitos baseados nos quatro que conheciam, mas a maior parte delas vieram a provar-se serem falsas. Nicômaco de Gerase, um neo-pitagórico do século I, afirmou que como 2, 3, 5, e 7 são precisamente os quatro primeiros primos, o quinto número perfeito seria obtido com n = 11, que é o quinto primo. Todavia, 211 − 1 = 2.047 = 23 × 89 não é primo e daí n = 11 não gera um número perfeito. Duas outras falsas afirmações são:

  • O quinto número perfeito teria cinco algarismos pois os primeiros quatro têm, respectivamente, 1, 2, 3, e 4 algarismos.
  • Os números perfeitos alternam 6 e 8 no último algarismo.

O quinto número perfeito () tem 8 algarismos, contrariando a primeira afirmação. Como termina em 6, a segunda afirmação parecia não ser falsa. Todavia, o sexto número perfeito (8 589 869 056) também termina em 6. É fácil provar que o último algarismo de um número perfeito par é sempre 6 ou 8.

Para que seja primo, é necessário mas não suficiente que seja primo. Os primos da forma 2n − 1 são conhecidos como primos de Mersenne, em honra do monge e matemático Marin Mersenne, que os estudou em 1.644 junto com a teoria dos números e as propriedades dos números perfeitos.

Um milénio depois de Euclides, Ibn al-Haytham (Alhazen) por volta do ano 1.000 percebeu que todo o número perfeito par é da forma 2n−1(2n − 1) onde 2n − 1 é um número primo, Mas não conseguiu provar o resultado.[2] Só no século XVIII Leonhard Euler provou que a fórmula 2n−1(2n − 1) daria todos os números perfeitos pares. Portanto, todo o primo de Mersenne gera um diferente número perfeito par, numa correspondência unívoca entre ambos os conjuntos. Este resultado é muitas vezes referido como o "teorema de Euclides-Euler". À data de Setembro de 2009 eram conhecidos 47 primos de Mersenne[3] o que significa que há 47 números perfeitos pares conhecidos, sendo o maior 243.112.608 × (243.112.609 − 1), um enorme número com 25.956.377 algarismos.

Os primeiros 39 números perfeitos pares são da forma 2n−1(2n − 1) para

n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 (seqüência A000043 na OEIS).

Os outros nove conhecidos são para n = 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 e 57885161. Não se sabe se há outros algures neste intervalo.

Atualmente temos (sequência A000396 na OEIS)

Números perfeitos ímpares

Não se conhecem actualmente números perfeitos ímpares e se existem ou não é uma conjectura antiga que permanece sem solução no caso geral. Em 2004 foi submetido ao arXiv um artigo pelo matemático australiano Simon Davis contendo uma demonstração.[4]

Estes números estão ligados a uma questão denominada como: "Conjectura de Oystein Ore sobre números harmônicos divisores".

Referências

  1. Plutarco, Vidas Paralelas, Vida de Licurgo, 5.8. Plutarco especula se Licurgo havia escolhido o 28 como o número de membros da Gerúsia por ser este um número perfeito, a soma dos seus fatores, mas logo em seguida rejeita esta ideia
  2. John J. O’Connor, Edmund F. RobertsonAbu Ali al-Hasan ibn al-Haytham. In: MacTutor History of Mathematics archive.
  3. Números primos de Mersenne
  4. Proof of the Odd Perfect Number Conjecture

Ligações externas

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.



Ícone de esboço Este artigo sobre teoria dos números é um esboço. Você pode ajudar a Wikipédia expandindo-o.