Floema: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Etiquetas: Edição via dispositivo móvel Edição feita através do sítio móvel
m ajustes usando script
Linha 20: Linha 20:


=== Células Crivadas ===
=== Células Crivadas ===
São células alongadas, que apresentam as paredes com áreas crivadas, com poros.
São células alongadas, que apresentam as paredes com áreas crivadas, com poros.


===Células de Companhia===
===Células de Companhia===
Linha 26: Linha 26:


=== Células do Parênquima Liberino ===
=== Células do Parênquima Liberino ===
As células do [[parênquima|parênquima,]] exercem funções de reserva de diferentes funções como amido, taninos e cristais.
As células do [[parênquima]], exercem funções de reserva de diferentes funções como amido, taninos e cristais.


=== Fibras liberinas e Esclereídes ===
=== Fibras liberinas e Esclereídes ===
As fibras liberinas (ou liberianas) são células mortas e abundantes no floema e exercem funções de suporte, podendo atuar também como células parenquimáticas, armazenando substâncias em suas células.
As fibras liberinas (ou liberianas) são células mortas e abundantes no floema e exercem funções de suporte, podendo atuar também como células parenquimáticas, armazenando substâncias em suas células.


As esclereídes também são células comuns no floema podendo estar associadas as fibra ou isoladas.
As esclereídes também são células comuns no floema podendo estar associadas as fibra ou isoladas.


== Mecanismos envolvidos no transporte de floema ==
== Mecanismos envolvidos no transporte de floema ==

Revisão das 05h09min de 7 de setembro de 2017

Em botânica, o floema é o tecido das plantas vasculares encarregado de levar a produtos fotoassimilados (ou comumente chamados em conjunto de seiva elaborada) pelo caule até à raiz e aos órgãos de reserva.

Os produtos transportados pelo floema são substâncias inorgânicas e orgânicas, como água, lipídios e carboidratos, são transportados desde os órgãos da planta com capacidade fotossintética (ou produtores), como folhas maduras, até outros que funcionam como consumidores dessas substâncias, para a formação de novos órgãos ou para reserva, nomeadamente, os meristemas, as células do interior do caule, da raiz, das flores, dos frutos e dos órgãos de reserva - que podem estar dispersos dentro do caule e da raiz, mas que podem estar especializados, como os tubérculos e rizomas.

Ocorrência

O floema está presente praticamente em toda fase da vida da planta, tanto estrutura primária, na qual a planta ainda está em sua forma jovem, quanto em estrutura secundária na qual os órgãos adquirem uma certa resistência. Ocorre em todas as partes da planta: caule, raiz, folha, partes florais etc.

Normalmente, durante o crescimento primário (em altura), o floema e o xilema se alternam - isto acontece devido à desorganização dos órgãos das plantas. Já durante o crescimento secundário (espessura), o floema fica mais externamente e o xilema mais internamente. Em alguns casos de famílias de dicotiledôneas, como Apocynaceae, Asteraceae, Curcubitaceae, apresentam um floema adicional interno ao xilema, chamado de floema incluso, interno ou intraxilemático, devido ao crescimento em excesso de algum órgão em espessura. Em órgãos como folhas, a posição do floema é dorsal.

Em plantas com crescimento secundário, o floema é parte do córtex ou "casca primária" e o termo floema deriva da palavra grega para "casca".

Células do floema

O floema é formado por células alongadas, cilíndricas, provenientes de células do procâmbio quando estão em crescimento primário, ou pelo câmbio vascular que forma o floema secundário da sua porção externa.

O floema é constituído por quatro tipos celulares básicos:

Elementos de Tubo Crivado

Os elementos de tubo crivado são células vivas (quase sem organelos), mais curtas, colocadas topo a topo, formando os tubos crivosos. As suas paredes celulares transversais denominam-se placas crivosas que fazem as conexões entre as células e através das aberturas chamadas crivos estabelecem a ligação entre o citoplasma de células adjacentes.'

Cada crivo é revestido de calose (polímero de glicose), que no inverno pode obstruir completamente o vaso, dissolvendo-se depois na primavera. Quando ocorrem infecções ou o vaso é parasitado, também pode ser obstruído com calose.

Células Crivadas

São células alongadas, que apresentam as paredes com áreas crivadas, com poros.

Células de Companhia

Células de companhia ou células companheiras são células parenquimáticas especializadas, que contém todos os componentes que existem nas células vivas, inclusive o núcleo, são as células mais intimamente ligadas ao elemento do tubo crivado. O Elemento do tubo crivado e suas células companheiras estão relacionados no desenvolvimento, são derivados da mesma célula mãe e têm várias conexões citoplasmáticas entre si. Devido as muitas conexões, a possível função das células companheiras é a de liberar substâncias para o elemento do tubo crivado, e, quando o núcleo deste estiver ausente, incluir moléculas de informação, proteínas e ATP. Quando um elemento crivado morre, morrem também suas células companheiras, o que é uma demonstração dessa interdependência.

Células do Parênquima Liberino

As células do parênquima, exercem funções de reserva de diferentes funções como amido, taninos e cristais.

Fibras liberinas e Esclereídes

As fibras liberinas (ou liberianas) são células mortas e abundantes no floema e exercem funções de suporte, podendo atuar também como células parenquimáticas, armazenando substâncias em suas células.

As esclereídes também são células comuns no floema podendo estar associadas as fibra ou isoladas.

Mecanismos envolvidos no transporte de floema

No floema, os produtos fotoassimilados é transportado em todas as direções (ao contrário do que ocorre no xilema), e a esta movimentação em todos os sentidos chama-se translocação floêmica, que ocorre a uma velocidade que varia entre 50 a 100 cm/h. Embora o movimento da seiva floêmica seja menos conhecido que o da xilêmica, a hipótese do fluxo de massa é a mais aceita relativamente ao transporte floêmico.

Hipótese do fluxo de massa

Ou hipótese de fluxo sob pressãoMünch (1926)

Esta hipótese baseia-se na existência de um gradiente de concentração de sacarose entre os órgãos produtores e os órgãos consumidores ou de armazenamento.

  1. A união da glicose mais a frutose forma a sacarose no mesofilo, antes de chegar ao floema;
  2. Por transporte ativo a sacarose passa para as células companhia (que produzem energia) e destas para os tubos crivosos (através das conexões plasmáticas);
  3. À medida que aumenta a concentração de sacarose no floema, aumenta também a pressão osmótica, em relação aos tecidos circundantes (xilema e parênquima);
  4. A água entra por osmose nos tubos crivosos, aumentando a pressão de turgescência;
  5. A pressão de turgescência empurra a seiva através das placas crivosas, movendo-se a seiva das zonas de maior pressão para as zonas de menor pressão;
  6. Conforme as necessidades da planta, a sacarose vai passando para os locais de consumo e reserva (pensa-se que por transporte ativo);
  7. Nos tubos crivosos o meio fica hipotônico (a pressão osmótica decresce), pelo que a água tende a sair por osmose;
  8. Nos órgãos de consumo e reserva a sacarose é degrada em glicose (e usada na respiração celular ou como componente de outros compostos), ou polimeriza-se em amido (ficando em reserva).
Limitações do Modelo
  • Não explica a translocação – movimento floémico bidireccional;
  • Os modelos físicos indicam que a pressão provocada pelo fluxo de massa não é suficiente para empurrar a seiva através das placas crivosas, estando certamente outros mecanismos, até agora desconhecidos, envolvidos neste processo.

Ver também

Ligações externas

Commons
Commons
O Commons possui imagens e outros ficheiros sobre Floema

Bibliografia

  • Campbell, Neil A. e Jane B. Reece (sem data) Biology, 6ª ed., Benjamin Cummings.
  • Salisbury,Frank; Ross, Cleon (1992). Plant Physiology Fourth Edition ed. Belmont: Wasworth, Inc. pp. pp. 161–188. ISBN 0-534-15162-0 
  • Meyer, B.; et al. (1973). Introdução à Fisiologia Vegetal 2ªedição ed. Lisboa: Fundação Calouste Gulbenkian. pp. pp.435–444 
  • Peter, Raven H., Evert, Ray F., Eichhorn, Susan E. ; Biologia Vegetal, 6a. ed., Guanabara Koogan, Rio de Janeiro, 2001.
  • APPEZZATO-DA-GLÓRIA, Beatriz; CARMELLO-GUERREIRO, Sandra Maria. Anatomia vegetal. 2. ed. rev. atu. Viçosa: UFV, 2006.