Teorema de Liouville: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
JCSantos (discussão | contribs)
m Melhorias tipográficas
JCSantos (discussão | contribs)
Linha 28: Linha 28:
* Conway, J. B.; ''Functions of One Complex Variable'', Berlim: Springer-Verlag, 1978
* Conway, J. B.; ''Functions of One Complex Variable'', Berlim: Springer-Verlag, 1978
* Matos, Coimbra de; Santos, José Carlos, ''Curso de Análise Complexa'', Lisboa: Dinternal, 2000
* Matos, Coimbra de; Santos, José Carlos, ''Curso de Análise Complexa'', Lisboa: Dinternal, 2000
* Remmert, R, ''Classical Topics on Complex Function Theory'', BerliM: Springer-Verlag, 1998
* Remmert, R, ''Classical Topics on Complex Function Theory'', Berlim: Springer-Verlag, 1998
[[Categoria:Análise complexa]]
[[Categoria:Análise complexa]]
[[Categoria:Teoremas de matemática|Liouville]]
[[Categoria:Teoremas de matemática|Liouville]]

Revisão das 22h56min de 13 de março de 2008

O teorema de Liouville é um teorema de análise complexa que diz que uma função complexa inteira e limitada é constante. Este teorema permite demonstrar o teorema fundamental da álgebra de forma simples.

Demonstrações

Em ambas as demonstrações, seja M um majorante de |f|.

Primeira demonstração

Seja z ∈ C. Para cada r > |z|, tem-se, pelas desigualdades de Cauchy (com n = 1), |f′(z)| < M/r. Mas então

Logo, f′(z) = 0. Como isto acontece para cada z ∈ C, f é constante.

Segunda demonstração

Sejam z e w números complexos e seja r um número real tal que |z|,|w| ≤ r. Seja

Então, pela fórmula integral de Cauchy:

e

pelo que

Logo,

Corolário

O teorema de Liouville afirma que a imagem de uma função inteira não constante f não é um conjunto limitado. De facto, a imagem de uma função inteira não constante é sempre um conjunto denso. Este resultado parece muito mais forte do que o teorema de Liouville, mas é um corolário dele. De facto, suponha-se que a imagem de f não era densa. Então haveria algum número complexo w e algum r > 0 tal que a imagem de f não conteria nenhum elemento do disco de centro r centrado em w. Mas então se se definisse

a função g seria inteira não constante e, para cada z ∈ C ter-se-ia

pelo que g seria limitada, o que contradiz o teorema de Liouville.

Generalizações

Um teorema mais forte do que o teorema de Liouville é o pequeno teorema de Picard, que afirma que se f é uma função ineira não constante, então a sua imagem é C ou C \ {a}, para algum a ∈ C. Um teorema ainda mais forte é o grande teorema de Picard, que afirma que se f for uma função inteira não polinomial e se w ∈ C, então a equação f(z) = w tem uma infinidade de soluções com, quando muito, uma excepção.

Bibliografia

  • Conway, J. B.; Functions of One Complex Variable, Berlim: Springer-Verlag, 1978
  • Matos, Coimbra de; Santos, José Carlos, Curso de Análise Complexa, Lisboa: Dinternal, 2000
  • Remmert, R, Classical Topics on Complex Function Theory, Berlim: Springer-Verlag, 1998