Espectroscopia NMR

Origem: Wikipédia, a enciclopédia livre.
Um instrumento RMN de 900MHz com um magneto de 21.2 T no Henry Wellcome Building for NMR (HWB-NMR), Birmingham, GB.

Espectroscopia por ressonância magnética nuclear, mais conhecida como espectroscopia por RMN, é uma técnica de pesquisa que explora as propriedades magnéticas de certos núcleos atômicos para determinar propriedades físicas ou químicas de átomos ou moléculas nos quais eles estão contidos. Baseia-se no fenômeno da ressonância magnética nuclear e pode fornecer informações detalhadas sobre a estrutura, dinâmica, estado de reação e ambiente químico das moléculas.

Mais frequentemente, espectroscopia RMN é usada por químicos e bioquímicos para investigar as propriedades de moléculas orgânicas, embora seja aplicável para qualquer núcleo que possua spin. Isto é válido desde compostos pequenos analisados com próton ou carbono unidimensional até grandes proteínas ou ácidos nucléicos usando técnicas de análise em 3 ou 4 dimensões. O impacto da espectroscopia NMR nas ciências naturais tem sido substancial, e esta técnica pode ser aplicada a uma grande variedade de amostras em solução e estado sólido.

O que é e como funciona a espectroscopia de RMN[editar | editar código-fonte]

A técnica de espectroscopia de ressonância magnética nuclear (RMN) fundamenta-se no estudo da interação entre a radiação eletromagnética, na região de radiofrequência, com determinados núcleos atômicos da matéria, ambos submetidos a um forte campo magnético. Através do equipamento de RMN é possível determinar a elucidação estrutural e a quantificação de compostos presentes em diferentes áreas da química, biologia, medicina etc.[1]

Quando se observa os núcleos atômicos, duas propriedades são importantes para o entendimento da RMN: o spin nuclear e o momento magnético. Spin é o momento angular intrínseco de partículas elementares, ou seja, o resultado do seu movimento através do espaço, sendo exemplos: prótons, nêutrons, elétrons, fótons etc.[2]

Segundo um dos postulados da química quântica entende-se que o momento angular de uma partícula está quantizado, sua grandeza é o número quântico do momento angular, representada pela letra I, sendo que, o número quântico de partículas elementares como elétrons, prótons e nêutrons é igual a ½.[3] O momento angular é representado pela equação (L = ħ I), em que ħ é a "constante reduzida de Planck" ou "constante de Dirac". Já o momento magnético é representado pela equação (µ = γL = γ ħ I), em que γ é a constante giromagnética.[4]

Os núcleos ativos para análise na espectroscopia de RMN apresentam o número quântico de spin nuclear igual a ½, este valor representa a resultante das partículas elementares que compõem o momento magnético do núcleo, o que possibilita entender sua interação com campo magnético externo, chamado de B0.[3]

No espectrômetro de RMN, a amostra que possui spins nucleares ativos é submetida ao campo magnético externo (B0), e quando iniciado o experimento é submetida a um pulso de radiação eletromagnética, também chamado de campo magnético oscilante (B1). Após desligar o pulso, cada momento magnético nuclear  (µi) precessiona ao redor desse campo magnético com frequência angular ϖ0, que depende da constante giromagnética do núcleo γ (razão entre o momento magnético µ e momento angular L) e de B0 , conforme mostrado a seguir.

ϖ0 = γ B0                                                                          

Uma vez que γ é uma constante, cada isótopo tem uma frequência de precessão única, chamada de frequência de Larmor (ϖ0), e na grande maioria das aplicações da RMN, a frequência de ressonância em Hz (ϖ0/2π) situa-se na faixa das frequências de rádio (MHz).[4] Com base nas propriedades até aqui descritas, pode-se pensar no comportamento do núcleo sob um forte campo magnético de acordo com o modelo vetorial. De fato, ao imaginar os spins nucleares como pequenos vetores possuindo momento magnético, na ausência de campo magnético, estes vetores estariam distribuídos no espaço em direções e sentidos aleatórios. Porém, na presença de um forte campo magnético externo, os vetores alinham-se na mesma direção deste.  Com base nesta situação, a resultante do momento magnético da população de spin (M0) apresenta o sentido do campo magnético externo. Esta teoria, ajuda a entender o que ocorre com o spin sob forte campo externo, quando submetido ao pulso eletromagnético.[5]

Na presença do campo externo B0 ao longo do eixo z, no equilíbrio termodinâmico, a magnetização resultante tem componente apenas ao longo do eixo z (M0) e é nula nos eixos x e y. Porém, a aplicação de pulsos eletromagnéticos na região de rádio frequência rotaciona a magnetização M0 por um ângulo θ = γ B1𝝉, sendo 𝝉 o tempo de aplicação do pulso e B1 a intensidade do campo magnético oscilante. O efeito do pulso pode ser representado matematicamente por uma matriz de rotação Rθ, a ser utilizada dependendo da fase do pulso. Por exemplo, para um pulso aplicado no eixo x (um pulso de 90º com fase x, rotaciona a magnetização para o eixo y) usa-se a matriz Rθx.[4]De forma idêntica, para um pulso aplicado no eixo y usa-se a matriz Rθy. [4]


A aplicação de um pulso faz com que a magnetização M0,que se encontrava originalmente na direção do campo B0 gire em um ângulo θ proporcional à duração do pulso, à intensidade do campo e a constante giromagnética. Assim, obtém-se uma magnetização do plano xy, originando as componentes Mx e My.

Após aplicação do pulso, ocorre o processo de relaxação quando B1 é desligado e o reequilíbrio térmico é iniciado. Durante esse período a magnetização torna a precessionar em torno de B0, quando também é feita a aquisição do sinal de RMN pelo processo de magnetização do plano xy.[6]

Técnicas básicas de RMN[editar | editar código-fonte]

A amostra RMN é preparada em um tubo de vidro de paredes finas - um tubo de RMN.

Na presença de um campo magnético, núcleos ativos à RMN (tais como 1H ou 13C) absorvem radiação eletromagnética a uma frequência característica do isótopo. A frequência de ressonância, a energia de absorção e a intensidade do sinal são proporcionais à força do campo magnético. Por exemplo, em um campo magnético de 21 tesla, prótons ressoam a 900 MHz. É comum referir-se ao magneto de 21 T como magneto de 900 MHz, embora diferentes núcleos ressoem a diferentes frequências para esse valor do campo.

No campo magnético da Terra, os mesmos núcleos ressoam em audiofrequências. Este efeito é usado em espectrômetros RMN de campo geomagnético e outros instrumentos. Por serem portáteis e baratos, são muitas vezes usados em aulas e trabalhos de campo.

O Espectrômetro de RMN[editar | editar código-fonte]

Existem dois tipos de espectrômetros de RMN: os mais antigos, de onda contínua (CW, na sigla em inglês) e os mais recentes, de pulso ou de Transformada de Fourier (FT-NMR, na sigla em inglês). Nos equipamentos CW, os espectros eram coletados através de lentas alterações no sinal da frequência de rádio, localizado próximo a amostra. O processo matemático conhecido como Transformada de Fourier, converte o sinal, que originalmente foi obtido em função do domínio tempo (Free Induction Decay, ou FID), para uma função no domínio da frequência. Assim, gera-se um gráfico da intensidade do sinal (eixo y) em função da frequência (eixo x), que consiste no espectro de RMN. A grande vantagem do FT-NMR é a rapidez de aquisição dos dados, uma vez que um espectro inteiro é coletado no período de 2 a 3 segundos, enquanto que no CW eram necessários 5 minutos. Assim, os equipamentos CW são hoje considerados obsoletos.[7]

Os componentes básicos de um espectrômetro de RMN são os seguintes: um magneto supercondutor, uma sonda, um transmissor de rádio, um receptor de rádio, um conversor de sinal analógico para digital (ADC) e um computador.[7]

O magneto é um solenóide composto por uma mistura dos metais supercondutores nióbio e titânio, o qual fica imerso num banho de hélio líquido, na temperatura de aproximadamente 4 K. Uma larga corrente flui pelos loops do solenóide, gerando um campo magnético forte e contínuo, sem alimentação externa. O compartimento de hélio é resfriado por uma jaqueta térmica, preenchida, por sua vez, com nitrogênio líquido (77 K).[7]

A sonda é uma bobina de fios, posicionada perto da amostra, permitindo a alternância entre a transmissão e a recepção dos sinais de frequência de rádio. O computador direciona o transmissor a enviar pulsos na frequência de rádio, com alta energia e curta duração, para a sonda. Logo após esse pulso, o fraco sinal recebido é amplificado, convertido em frequência de áudio e registrado em intervalos de tempo definidos pelo ADC, criando um sinal digital, que se consiste basicamente em uma lista de números.[7]

O computador determina a intensidade e o tempo dos pulsos, além de processar os sinais digitais fornecidos pelo ADC e aplicar a transformada de Fourier, gerando o espectro de RMN no monitor.[7]

O custo de um espectrômetro de RMN varia de 120 mil a 5 milhões de dólares, dependendo da força do campo magnético (200 a 900 MHz, na frequência do próton). Os principais fabricantes mundiais desses equipamentos são as empresas Bruker Corporation e Agilent Technologies (ambas americanas).

Espectros de RMN e informação estrutural[editar | editar código-fonte]

O estudo de compostos orgânicos por meio da espectroscopia de ressonância magnética nuclear (RMN) é uma técnica importante para determinar as estruturas dessas moléculas. Os espectros de RMN são utilizados para determinar o número de moléculas não equivalentes e para identificar os tipos de átomos correspondentes presentes em um composto. Dentre as moléculas que podem ser elucidadas por essa técnica, é possível citar às que possuem o núcleo  carregados em estado de spin de +1/2 e -1/2 como: 1H, 13C, 15N, 19F, 31P. Nesse contexto, a análise do espectro de RMN de 13C associada com a análise dos espectros de RMN 1H permite que se determine a fórmula molecular de uma substância, a formula estrutural e até mesmo a espacial[8][9]

Estado de spin e a formação do espectro[editar | editar código-fonte]

Os núcleos carregados de uma molécula geram um campo magnético semelhante ao de um pequeno imã. Quando uma amostra é colocada em um campo magnético aplicado, o núcleo gira e se alinha a favor ou contra o campo de maior magnetismo. Quando um próton se alinha a favor do campo diz-se que esse está no estado spin α de menor energia; quando se alinha contra o campo ele está no estado spin β de maior energia. As diferenças entre esses alinhamentos formam a base da espectroscopia de RMN.[10]

Quando um campo magnético é aplicado (β0) gera uma diferença de energia (∆E) entre os estados de spin α e β e o núcleo no estado de spin α é promovido ao estado spin β. Ao retornar ao seu estado original, os núcleos emitem sinais eletromagnéticos que são detectados pelo espectrômetro de RMN, que registra a frequência desse sinal versus  sua intensidade, o que chamamos de espectro de RMN.[10]

Precession in magnetic field.svg

Após a obtenção do espectro de RMN pode-se extrair informações relacionadas ao número de sinais , que mostra quantos tipos diferentes da molécula está presente; a localização do sinal , que mostra como o núcleo é protegido ou desprotegido; a intensidade, que relaciona o número de moléculas do mesmo tipo; e o desdobramento do sinal, que mostra o número dessas moléculas em átomos adjacentes.[11]

O spin é um número quântico (I) que pode assumir dois valores: -1/2 ou +1/2 e indica a forma, a energia e a orientação do elétron de uma partícula. Entre os níveis de energia, há os de apenas um giro, que se movem rapidamente, os  de dois e três giros acoplados (sistemas de spin), mas existem outras transições, denominadas de transições quânticas múltiplas, que podem ser observados em um espectro de RMN. Em moléculas com apenas um spin, existe uma interação com um campo magnético que dá origem a dois níveis de energia, representado por outro número quântico (m) que está restrito aos valores de –I e I. Em casos com dois spins na molécula, assume-se que cada spin pode estar no estado α ou β, existindo então quatro possibilidades: α1α2, α1β2, β1α2 e β1β2, que representam os quatro níveis de energia possível. O mesmo raciocínio se aplica para três ou mais spins, de modo que quanto maior o número de giros, maior o número de possibilidades e consequentemente mais níveis de energia.[8]

Em termos de energia, podemos representar α e β como sendo Eα e Eβ, de modo que:

Onde, vo,1 é a frequência de Larmor do spin 1. Que no espectro de RMN estaria representado de acordo com a imagem abaixo, que representa a transição entre os dois níveis de energia de um spin e resulta em uma única linha na frequência de Larmor.

RMN1416.jpg

No caso de moléculas com dois spins a regra é semelhante, no entanto o número quântico M é representado somando os valores de m de cada spin (M=m1+m2), de modo que cada transição permitida corresponde a um dos spins passando de um estado para outro, enquanto o estado de spin do outro spin permanece fixo, como se pode observar na imagem a seguir[8][9]

RMN1417.jpg

É importante salientar que essa abordagem se aplica apenas para sistemas de spin fracamente acoplados, ou seja, sistemas em que a diferença entre as frequências de Larmor (em Hz) dos spins são muito maiores em magnitude do que a magnitude dos acoplamentos entre os spins. Quando a separação das frequências de Larmor não é suficiente para satisfazer o critério de acoplamento fraco, diz-se que o sistema está fortemente acoplado e a única abordagem prática é usar a simulação em um computador[10][9][8]

Com base nessas informações, pode-se determinar através dos sinais de um espectro de RMN, seja ele de 13C ou 1H, o esqueleto de carbono de um composto, ou a conformação dos hidrogênios de uma molécula.

Aplicação da Ressonância Magnética Nuclear na Metrologia[editar | editar código-fonte]

A espectroscopia de ressonância magnética nuclear (RMN) é uma técnica analítica baseada no fato de alguns núcleos atômicos possuírem propriedades de spin e momento magnético, que possibilita serem levados a um deslocamento de seus níveis de energia quando expostos a um campo magnético intenso. No caso da ressonância magnética nuclear de hidrogênio, o núcleo atômico de interesse é o próton (1H). A análise consiste em submeter o núcleo atômico a um campo magnético artificial que será responsável pela transição de nível energético e a intensidade (I) do sinal será diretamente proporcional ao número de núcleos em ressonância independentemente da estrutura analisada.[12][13]

A espectroscopia de RMN de hidrogênio, método quantitativo (RMNq 1H) permite a elucidação de estruturas químicas, identificação e quantificação, isso é possível porque a área do sinal integrado é diretamente proporcional ao número de núcleos que originaram aquele sinal.[14][15] Para a quantificação direta das substâncias, procedimentos primários de medição devem ser empregados, quando possível,  para garantir que o resultado da pureza do analito tenha rastreabilidade ao SI. RMN é considerada um método de medição potencialmente primário. Ou seja, é um método que fornece resultados diretamente rastreáveis ao Sistema Internacional de Unidades, conhecido por SI, sem precisar de padrões ou materiais de referência intermediários, nem de fatores de correção empíricos.[16] O método primário permite transformar a definição abstrata de uma unidade do SI em medidas experimentais baseadas naquela unidade.[17][18]

Essa aplicação da RMN na quantificação de substâncias vem chamando a atenção de diversos Institutos Nacionais de Metrologia. Esta técnica pode ser usada, por exemplo, na produção de material de referência certificado (MRC) na etapa de caracterização, sendo utilizada para a determinação da pureza de compostos orgânicos pelo método de padronização interna.[19][20]

Em função da sua aplicabilidade, facilidade de preparo de amostra e confiabilidade de resultados, esta técnica tem ganhado grande importância na comunidade científica.[19][20] Isso se deve à capacidade única de qNMR de atingir a mesma magnitude de resposta de núcleos magnéticos, como 1H, independentemente da estrutura química.[17]

A melhor forma para obter resultados rastreáveis ao SI por RMN é medir a razão entre a área do sinal que se pretende quantificar e a área de um padrão interno. Por isso, a RMN pode ser chamada de “método de medição primário de razões”. O padrão interno escolhido para o experimento é uma substância diferente da que está sendo analisada e que os sinais no espectro referente ao padrão não sobreponham aos da amostra.

O padrão interno utilizado na quantificação por RMN deve ser um material de referência certificado para que os resultados obtidos sejam rastreáveis ao SI. Os MRC são estudados extensivamente e apresentam em seu certificado informações como a incerteza de medição e como foi estabelecida a rastreabilidade metrológica dos valores certificados. O Inmetro vem desenvolvendo materiais de referência certificados de substâncias puras que podem ser usadas como padrões internos em ensaios de RMN. Por exemplo, tereftalato de dimetila, dimetilsulfona, hidrogenoftalato de potássio e ácido maleico.[21]

Nem todos os experimentos de RMN são medições primárias. Para que os resultados de RMN sejam rastreáveis ao SI, diversos cuidados devem ser tomados no preparo da amostra e na aquisição dos espectros. A etapa da pesagem tem muito impacto nos resultados da RMN quantitativa. Tanto a amostra quanto o padrão interno devem ser pesados com muito cuidado para evitar erros no resultado, de preferência usando balanças de resolução alta para diminuir a incerteza de medição. O Inmetro publicou um guia para difundir a forma correta de obter resultados rastreáveis ao SI por RMN e fornecer informações sobre dos parâmetros adotados nas análises quantitativas.[22]

Uma vez que a amostra foi preparada corretamente, a aquisição dos espectros de RMN já pode ser realizada. Os parâmetros utilizados nos experimentos quantitativos são um pouco diferentes daqueles usualmente empregados para espectros qualitativos. Com o experimento programado, o equipamento vai adquirir os espectros para cada amostra e depois é só processar os resultados.

Inúmeras são as vantagens da quantificação por RMN e algumas podem ser citadas, tais como: Identificação precisa das entidades moleculares, estabelecimento da estrutura molecular exata incluindo estereoquímica, menor erro, determinação do conteúdo absoluto ('medição') do analíto com base no sinal de RMN de próton (1H) apenas, eliminando assim o efeito de variações isotópicas em diferentes amostras, mais específico e preciso do que frações de pureza de massa e rastreabilidade para unidades SI.[23]

Além disso, a técnica é aplicável a uma variedade de núcleos, como 19F, 31P, 17O, bem como 1H, tornando qNMR uma proposição atraente para a pureza avaliação de uma ampla gama de padrões de calibração orgânica.[15]

RMN aplicado a análise de alimentos[editar | editar código-fonte]

A ressonância magnética nuclear (RMN) pode ser aplicada a uma ampla gama de matrizes líquidas e sólidas sem alterar a amostra ou produzir resíduos perigosos. Embora a sensibilidade e os limites de detecção do RMN ainda precisem ser melhorados, a técnica ainda tem várias vantagens em relação a outras ferramentas analíticas comuns, como cromatografia líquida de alta pressão (HPLC), cromatografia gasosa (GC) e espectrometria de massa (MS). A tecnologia de RMN foi usada inicialmente no final dos anos 1940 para elucidar a estrutura das moléculas na química orgânica.[24] No entanto, as diversas aplicações da espectroscopia na ciência de alimentos foram adiadas até a década de 1980, principalmente devido à falta de conhecimento científico, alto custo do equipamento e a ausência de peças projetadas especificamente para fins alimentares.

Com o desenvolvimento da instrumentação e programas aprimorados para coletar e analisar os dados, a aplicabilidade da técnica recentemente se expandiu rapidamente no campo da ciência e tecnologia de alimentos. Uma ampla gama de pesquisas relacionadas a alimentos, utilizando RMN, cobriu vários campos da ciência alimentar, incluindo microbiologia de alimentos, química de alimentos, engenharia de alimentos e embalagem de alimentos.[25]

Hoje em dia, a análise de RMN é, muitas vezes, baseada no comportamento de núcleos ativos, ou seja, 1H, 13C que são os mais amplamente usados ​​para aplicações em alimentos) em um campo magnético e uma irradiação de radiofrequência (RF) pulsada. O relaxamento descreve um processo complexo dos núcleos desde a excitação, devido à divisão dos níveis de spin nuclear (efeito Zeeman) pelo campo magnético aplicado, ao equilíbrio.[26]

Com base no princípio de RMN, a imagem por ressonância magnética permite ainda a observação visual do interior dos alimentos. A ressonância magnética oferece não apenas informações sobre a composição química e estrutura interna de certos alimentos, mas também permite o monitoramento da composição interna e modificação estrutural dos alimentos quando são submetidos a diferentes práticas agrícolas (ou seja, colheita, pós-colheita) e posse industrial. A técnica expandiu a capacidade das metodologias de classificação de qualidade em alimentos atualmente disponíveis on-line, que normalmente têm sido usadas apenas para monitorar propriedades externas, como cor, tamanho, forma ou defeitos externamente visíveis.[27]

O progresso na pesquisa do uso de RMN em alimentos foi abordado em várias revisões recentes com um escopo limitado focando em aplicações em alimentos específicos, como vinho;[28] alimentos lácteos[29] ou aplicações específicas, como identificação de autenticidade alimentar e investigação das correlações entre distribuição e mobilidade de água, capacidade de retenção de água e qualidade da carne,[30] ou avaliação ou inspeção dos parâmetros de qualidade das frutas.[31]

É possível notar um crescimento exponencial no número de publicações sobre aplicações de RMN na ciência de alimentos na última década. No passado, o RMN foi aplicado majoritariamente em pesquisas básicas de química orgânica e biomoléculas,[32] mas alcançou agora um nível de avanço que torna possível a aplicação em laboratórios de controle de alimentos de rotina e amostras complexas, como bebidas fermentadas, mel, água, peixes (contaminação por metal pesado, por exemplo), óleos como azeites, frutas, queijos, entre muitos outros. As técnicas de RMN possuem maior precisão experimental, pois garantem a estabilidade a longo prazo dos espectros, a comparação interna de espectros entre diferentes instrumentos e a falta de necessidade de padronização ou calibração interna. Além disso, uma replicação de amostras pode ser mesclado usando técnicas de RMN 1D e 2D, para fornecer uma faixa de distribuição de referência, que permite detectar imediatamente a adulteração se sinais inesperados de RMN fora da variação natural do produto.[33] Como exemplo de adulteração, são análises de mel adulterados com açúcares provenientes do melado de cana.

Com avanços instrumentais recentes, os níveis de precisão e exatidão atingíveis tornaram-se comparáveis, em alguns casos com maior precisão, aos de técnicas cromatográficas, permitindo que todo o potencial da técnica para análises quantitativas/qualitativa pudesse ser explorado.[34]

A espectroscopia de RMN é a técnica espectroscópica mais versátil e informativa empregada em laboratórios modernos de pesquisa química e na área de alimentos. Desenvolvimentos modernos nessa técnica têm sido extremamente importantes para a pesquisa química e bioquímica. A espectroscopia de RMN, quando realizada em condições quantitativas, se fundamenta na premissa de que a área de um sinal atribuído a um núcleo excitado é proporcional ao número de moléculas a qual o núcleo faz parte. Como tal premissa é independente da molécula a qual o núcleo pertence, a técnica dispensa o uso de padrões de referência idênticos à substância em análise. A quantificação absoluta da amostra é viabilizada pela comparação entre as áreas dos sinais correspondentes a uma substância padrão, cuja concentração é conhecida e aquelas referentes a amostra, sendo desnecessária a construção de uma curva de calibração. O uso de referências eletrônicas em análises quantitativas de RMN foi introduzido para estudos em metabolômica e foi chamado de Electronic Reference to Assess In vivo Concentrations (ERETICTM).[35]

Mais tarde, considerando a necessidade do uso de instrumentação adicional externa na implementação da técnica ERETICTM, outro grupo introduziu uma técnica similar que foi chamada “determinação de concentração baseada na largura de pulso” (Pulse length based concentration determination – PULCON). Esse método prometia uma forma fácil de usar e robusta para a determinação de concentrações em procedimentos de rotina e, de fato, aplicações desse método comparado com formas clássicas de padronização têm mostrado que o mesmo oferece resultados tão bons quanto a padronização interna com uma pequena perda de precisão.[36]

As principais vantagens dos métodos de padronização eletrônica são que para esses métodos não há necessidade de pesagem de um padrão interno, o que também elimina a possibilidade de interações indesejáveis entre a amostra e o padrão, problemas com a solubilidade do padrão interno na solução, e a possibilidade de se fazer diversas medidas utilizando-se apenas uma referência para cada sonda de RMN.[36]

Além disso, espectros de amostras complexas são carregados de sinais e encontrar um padrão interno que cumpra todos os requisitos para preparo de amostras e ainda tenha sinais em uma região limpa do espectro nem sempre é uma tarefa simples e consiste em uma das principais limitações na determinação da pureza de compostos orgânicos por RMN.[37]


Poder de quantificação da RMN em Química[editar | editar código-fonte]

A grande vantagem do uso de RMN, em relação a outras técnicas, para quantificar compostos orgânicos é que o 1H pode ser utilizado como núcleo a ser observado. Como praticamente toda molécula de um composto orgânico apresenta pelo menos um átomo de hidrogênio em sua composição, a RMN torna-se uma técnica praticamente universal em química orgânica.

A área (A) sob um sinal de RMN é proporcional ao número N de núcleos que dão origem a esse pico (k corresponde ao fator de sensibilidade do espectrômetro).[38][39]


Para um experimento quantitativo, é imprescindível o ajuste de dois de parâmetros principais de aquisição no equipamento de RMN, - calibração do pulso de 90º e a determinação do tempo de relaxação longitudinal (T1).

Após a aplicação do pulso, as moléculas da amostra são orientadas e ficam em um único eixo espacial. Desligado o pulso e passado um tempo, essas moléculas começam a perder magnetização e inicia-se o processo de relaxação, até retornarem ao estado fundamental. Esse é o T1. O mecanismo de relaxação é entendido pela equação abaixo:


Mt =Mmáx (1-e(-t/T1))

Onde:

Mt é a magnetização no tempo = (t) após o pulso.

Mmáx é a magnetização máxima após recuperação total.

A resolução desta equação para os tempos t de 1 até 6 estão no gráfico abaixo. Conforme pode-se observar graficamente, quanto maior o tempo que se espera, mais núcleos estão relaxados.

Relaxação de acordo com a Equação acima (https://radiopaedia.org/cases/22460?lang=us">rID: 22460)

Em análises qualitativas, aceita-se uma relação de três vezes o T1 (número 3 no eixo x do gráfico). Conforme observa-se o gráfico 1, nessas condições, 95% dos sinais (núcleos) da amostra estarão relaxados, ou seja, 5% ainda não estarão completamente relaxados quando o próximo pulso for aplicado.

Entretanto, em análises quantitativas não é desejável um erro de 5% de moléculas não relaxadas, pois esse erro pode ser refletido em perda de exatidão do método. Dessa forma, tempo de repetição maiores ou iguais a 7 x T1 para pulso de 90 ° devem ser utilizados para uma aquisição em análise quantitativa. Os pulsos de 30 °, apesar de apresentarem relaxação mais rápida, dão como resultados sinais com intensidades menores do que o de 90 °. Dessa forma, em análises quantitativas recomenda-se sempre a utilização de pulsos de 90 °.[22]

Devido ao fato de que a intensidade de um sinal é proporcional ao número de núcleos sendo observados, a quantidade de analitos analisados pode ser calculada diretamente usando a razão das intensidades de sinal do analito e o padrão de referência interno.[40][41] A padronização interna é o método de quantificação por RMN com melhor exatidão. Este método consiste em uma inserção quantitativa de um composto (padrão interno) na amostra. Dessa forma, o padrão interno sofre todos os efeitos que por ventura podem afetar a quantificação do sinal do analito na matriz, como pequenas variações do pulso e da temperatura do tubo, por exemplo. Assim, todas essas pequenas variações, afetando tanto o padrão interno quanto a amostra, serão anuladas. Quando o experimento é realizado, a magnitude da integral de cada sinal é independente da estrutura química do material de origem. Os sinais oriundos de um mesmo número de núcleos produzirão a mesma área de sinal. Assim sendo, pode-se calcular a concentração de um determinado composto pela equação abaixo[22]:


wx=(Ix/Is ×Ns/Nx ×Mx/Ms ×ms/mx)× ws

Onde: wxé a fração mássica a ser determinada de analito no material, ws é a fração mássica de padrão interno adicionada na amostra, Ix e Is são as integrais dos sinais quantificados, Nx e Nssão os números de núcleos que contribuem para o sinal quantificado, Mx e Ms são as massas molares de analito e padrão interno e mx e ms são as massas das alíquotas de amostra e padrão interno usadas no preparo da solução para a medida no instrumento.[42]

Apesar da vantagem de fornecer resultados com maior exatidão e precisão em relação à padronização externa (onde o analito não tem contato com padrão de referência), a padronização interna pode resultar a contaminação de analitos.[43][44] Além disso, o padrão interno deve cumprir vários requisitos como ser solúvel na amostra, não interagir quimicamente com o analito, não sobrepor ao sinal do analito, e o tempo de relaxação longitudinal (T1) deve ser próximo ou menor que o da amostra porque a duração do experimental é determinada pelo T1 mais longo, fatores que às vezes dificultam a obtenção de um composto de referência adequado e, portanto, requer investimento no método desenvolvimento.[45]

Como uma alternativa para a padronização interna, Akoka et al. (1999)[45] propuseram o método ERETIC (Electronic Reference To access In vivo Concentrations) para estudos metabolômicos. Este método fornece um sinal de referência sintético, produzido por um dispositivo eletrônico, que poderia ser calibrado por um padrão de referência e então usado para o determinação das concentrações absolutas para a amostra. No ERETIC não é adicionado nenhum padrão à amostra e a frequência do sinal de referência pode ser posicionada livremente em  uma região transparente do espectro (ou seja, uma região onde não há sinais de matriz).[45][46]  As desvantagens do ERETIC são que o sinal artificial tem que ser regularmente correlacionado e o próprio método requer hardware especializado adicional e modificações na configuração do espectrômetro. Considerando a necessidade de hardware externo na implementação da metodologia ERETIC, foi introduzida o método de quantificação semelhante, de determinação de concentração baseada em comprimento de pulso - PULCON ( Pulse length-based Concentration determination). O PULCON correlaciona as intensidades absolutas em dois espectros de RMN unidimensionais pelo princípio da reciprocidade, que afirma que a força do sinal NMR é inversamente proporcional ao comprimento do pulso de 90°.  As principais vantagens dos métodos de referência eletrônica ERETIC e PULCON são que não há necessidade de usar padrão interno, não há sobreposição, interação indesejada entre os amostra e o padrão, problemas de solubilidade do padrão interno, elimina possibilidade de contaminação, a possibilidade de medir várias amostras usando apenas uma referência para cada sonda de RMN.[46][45]



Referências

  1. Munte, Claudia Elisabeth. «Ressonância magnética nuclear na determinação de estrutura de proteínas: aplicação à mutante His15Ala de HPr de staphylococcus aureus.». Consultado em 19 de novembro de 2021 
  2. Homann, K. H. (maio de 1980). «Ira N. Levine: Physical Chemistry. McGraw-Hill Book Company, 1978. 847 Seiten, Preis: $ 53,30». Berichte der Bunsengesellschaft für physikalische Chemie (5): 521–522. ISSN 0005-9021. doi:10.1002/bbpc.19800840525. Consultado em 19 de novembro de 2021 
  3. a b Carlos F. G. C. Geraldes (1 de dezembro de 2003). «Imagem Através da Ressonância Magnética Nuclear (IRM)». Boletim da Sociedade Portuguesa de Química. 49 páginas. doi:10.52590/m3.p616.a30001167. Consultado em 19 de novembro de 2021 
  4. a b c d Moraes, Tiago Bueno; Colnago, Luiz Alberto (2014). «SIMULATION OF NMR SIGNALS THROUGH THE BLOCH EQUATIONS». Química Nova (em inglês). ISSN 0100-4042. doi:10.5935/0100-4042.20140210. Consultado em 19 de novembro de 2021 
  5. Sørensen, O. W. (2006). «James Keeler. Understanding NMR Spectroscopy». Magnetic Resonance in Chemistry (8): 820–820. ISSN 0749-1581. doi:10.1002/mrc.1798. Consultado em 19 de novembro de 2021 
  6. Carvalho, André de Souza. «Análises de parâmetros físicos e químicos por ressonância magnética nuclear em baixo campo». Consultado em 19 de novembro de 2021 
  7. a b c d e Jacobsen, Neil E. (10 de agosto de 2007). NMR Spectroscopy Explained (em inglês). Hoboken, NJ, USA: John Wiley & Sons, Inc. 
  8. a b c d Keeler, James (2006). «Understanding NMR Spectroscopy». Choice Reviews Online. 10. 43  line feed character character in |titulo= at position 18 (ajuda);
  9. a b c Pavia, Donald L. (2010). Introdução a espectroscopia. Washington: CENGAGE Learning 
  10. a b c Bruice, Paula Yurkanis (2006). Química orgânica 4. ed ed. São Paulo: Pearson Education do Brasil. OCLC 817194769 
  11. Wade, L. G. (2012). Química orgánica 7a ed ed. México: Pearson. OCLC 793346598 
  12. Skoog, Douglas A.; Holler, F. James.; Crouch, Stanley R.; Marco Tadeu (2006). Fundamentos de química analítica 8. ed ed. São Paulo: Pioneira Thomson Learning. OCLC 69938980 
  13. Yip, Yiu-chung; Wong, Siu-kay; Choi, Sik-man (abril de 2011). «Assessment of the chemical and enantiomeric purity of organic reference materials». TrAC Trends in Analytical Chemistry (em inglês) (4): 628–640. doi:10.1016/j.trac.2010.12.003. Consultado em 21 de dezembro de 2020 
  14. Tangpaisarnkul, Nongluck; Tuchinda, Patoomratana; Wilairat, Prapin; Siripinyanond, Atitaya; Shiowattana, Juwadee; Nobsathian, Saksit (30 de julho de 2018). «Development of pure certified reference material of stevioside». Food Chemistry (em inglês): 75–80. ISSN 0308-8146. doi:10.1016/j.foodchem.2018.02.029. Consultado em 21 de dezembro de 2020 
  15. a b Davies, Stephen R.; Jones, Kai; Goldys, Anna; Alamgir, Mahuiddin; Chan, Benjamin K. H.; Elgindy, Cecile; Mitchell, Peter S. R.; Tarrant, Gregory J.; Krishnaswami, Maya R. (abril de 2015). «Purity assessment of organic calibration standards using a combination of quantitative NMR and mass balance». Analytical and Bioanalytical Chemistry (em inglês) (11): 3103–3113. ISSN 1618-2642. doi:10.1007/s00216-014-7893-6. Consultado em 21 de dezembro de 2020 
  16. Luan, Jiaqi; Feng, Rui; Yu, Chen; Wu, Xuri; Shen, Wenbin; Chen, Yijun; Di, Bin; Su, Mengxiang (10 de setembro de 2018). «Quantitative Assessment of the Absolute Purity of Thiopeptcin Reference Standard by 1H-NMR». Analytical Sciences (em inglês) (9): 1093–1098. ISSN 0910-6340. doi:10.2116/analsci.18P095. Consultado em 21 de dezembro de 2020 
  17. a b Melanson, Jeremy E.; Thibeault, Marie-Pier; Stocks, Bradley B.; Leek, Donald M.; McRae, Garnet; Meija, Juris (1 de outubro de 2018). «Purity assignment for peptide certified reference materials by combining qNMR and LC-MS/MS amino acid analysis results: application to angiotensin II». Analytical and Bioanalytical Chemistry (em inglês) (26): 6719–6731. ISSN 1618-2650. doi:10.1007/s00216-018-1272-7. Consultado em 21 de dezembro de 2020 
  18. Miura, Toru; Sugimoto, Naoki; Bhavaraju, Sitaram; Yamazaki, Taichi; Nishizaki, Yuzo; Liu, Yang; Bzhelyansky, Anton; Amezcua, Carlos; Ray, Joseph (1 de setembro de 2020). «Collaborative Study to Validate Purity Determination by 1H Quantitative NMR Spectroscopy by Using Internal Calibration Methodology». Chemical and Pharmaceutical Bulletin (em inglês) (9): 868–878. ISSN 0009-2363. doi:10.1248/cpb.c20-00336. Consultado em 21 de dezembro de 2020 
  19. a b Beyer, Tanja; Diehl, Bernd; Holzgrabe, Ulrike (dezembro de 2010). «Quantitative NMR spectroscopy of biologically active substances and excipients». Bioanalytical Reviews (em inglês) (1-4): 1–22. ISSN 1867-2086. doi:10.1007/s12566-010-0016-8. Consultado em 21 de dezembro de 2020 
  20. a b Hays, Patrick A. (2005). «Proton Nuclear Magnetic Resonance Spectroscopy (NMR) Methods for Determining the Purity of Reference Drug Standards and Illicit Forensic Drug Seizures». Journal of Forensic Sciences (em inglês) (6): 1–19. ISSN 0022-1198. doi:10.1520/JFS2005124. Consultado em 21 de dezembro de 2020 
  21. «Solicitação de Material de Referência Certificado (MRC)». Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro). Consultado em 12 de Dezembro de 2020 
  22. a b c Wollinger, W; Garrido, Bruno. «Calibração em RMNq: Guia para obter resultados rastreáveis ao sistema internacional de unidades (SI)». Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro). Consultado em 12 de Dezembro de 2020 
  23. Taibon, Judith; van Rooij, Milou; Schmid, Rupert; Singh, Neeraj; Albrecht, Eva; Anne Wright, Jo; Geletneky, Christian; Schuster, Carina; Mörlein, Sophie (agosto de 2020). «An isotope dilution LC-MS/MS based candidate reference method for the quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human whole blood». Clinical Biochemistry (em inglês): 73–84. doi:10.1016/j.clinbiochem.2019.11.006. Consultado em 21 de dezembro de 2020 
  24. Gutowsky, H. S.; Kistiakowsky, G. B.; Pake, G. E.; Purcell, E. M. (outubro de 1949). «Structural Investigations by Means of Nuclear Magnetism. I. Rigid Crystal Lattices». The Journal of Chemical Physics (10): 972–981. ISSN 0021-9606. doi:10.1063/1.1747097. Consultado em 16 de janeiro de 2021 
  25. Belton, P.S.; Engelsen, S.B.; Jakobsen, H.J. (eds.). «Front Matter». Cambridge: Royal Society of Chemistry: P001–P004. ISBN 978-0-85404-648-5. Consultado em 16 de janeiro de 2021 
  26. Novoa-Carballal, Ramon; Fernandez-Megia, Eduardo; Jimenez, Carlos; Riguera, Ricardo (2011). «NMR methods for unravelling the spectra of complex mixtures». Nat. Prod. Rep. (1): 78–98. ISSN 0265-0568. doi:10.1039/c005320c. Consultado em 16 de janeiro de 2021 
  27. Chayaprasert, Watcharapol; Stroshine, Richard (junho de 2005). «Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor». Postharvest Biology and Technology (3): 291–301. ISSN 0925-5214. doi:10.1016/j.postharvbio.2005.02.006. Consultado em 16 de janeiro de 2021 
  28. Ogrinc, N.; Košir, I. J.; Spangenberg, J. E.; Kidrič, J. (27 de março de 2003). «The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review». Analytical and Bioanalytical Chemistry (4): 424–430. ISSN 1618-2642. doi:10.1007/s00216-003-1804-6. Consultado em 16 de janeiro de 2021 
  29. Mariette, F. (junho de 2009). «Investigations of food colloids by NMR and MRI». Current Opinion in Colloid & Interface Science (3): 203–211. ISSN 1359-0294. doi:10.1016/j.cocis.2008.10.006. Consultado em 16 de janeiro de 2021 
  30. Pearce, Kelly L.; Rosenvold, Katja; Andersen, Henrik J.; Hopkins, David L. (outubro de 2011). «Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes — A review». Meat Science (2): 111–124. ISSN 0309-1740. doi:10.1016/j.meatsci.2011.04.007. Consultado em 16 de janeiro de 2021 
  31. Butz, Peter; Hofmann, Claudia; Tauscher, Bernhard (31 de maio de 2006). «Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetable Internal Quality Analysis». Journal of Food Science (9): R131–R141. ISSN 0022-1147. doi:10.1111/j.1365-2621.2005.tb08328.x. Consultado em 16 de janeiro de 2021 
  32. Lolli, Massimo; Bertelli, Davide; Plessi, Maria; Sabatini, Anna Gloria; Restani, Cinzia (fevereiro de 2008). «Classification of Italian Honeys by 2D HR-NMR». Journal of Agricultural and Food Chemistry (4): 1298–1304. ISSN 0021-8561. doi:10.1021/jf072763c. Consultado em 16 de janeiro de 2021 
  33. Wong, Kenneth C. (4 de agosto de 2015). «Review of Spectrometric Identification of Organic Compounds, 8th EditionSpectrometric Identification of Organic Compounds, 7th edition by Robert M. Silverstein, Francis X. Webster, David J. Kiemle, and Robert L.Bryce. John Wiley and Sons: Hoboken, NJ, 2015. viii + 455 pp. ISBN 978-0-470-61637-6 (paperback). $190.42». Journal of Chemical Education (10): 1602–1603. ISSN 0021-9584. doi:10.1021/acs.jchemed.5b00571. Consultado em 16 de janeiro de 2021 
  34. De Carvalho, Márcio J. R. (12 de junho de 2018). «Editorial». Em Tese (1): 01–02. ISSN 1806-5023. doi:10.5007/1806-5023.2018v15n1p1. Consultado em 16 de janeiro de 2021 
  35. Barantin, Laurent; Pape, Alain Le; Akoka, Serge (agosto de 1997). «A new method for absolute quantitation MRS metabolites». Magnetic Resonance in Medicine (2): 179–182. ISSN 0740-3194. doi:10.1002/mrm.1910380203. Consultado em 16 de janeiro de 2021 
  36. a b Cullen, Christopher H.; Ray, G. Joseph; Szabo, Christina M. (setembro de 2013). «A comparison of quantitative nuclear magnetic resonance methods: internal, external, and electronic referencing». Magnetic Resonance in Chemistry: n/a–n/a. ISSN 0749-1581. doi:10.1002/mrc.4004. Consultado em 16 de janeiro de 2021 
  37. Wider, Gerhard; Dreier, Lars (março de 2006). «Measuring Protein Concentrations by NMR Spectroscopy». Journal of the American Chemical Society (8): 2571–2576. ISSN 0002-7863. doi:10.1021/ja055336t. Consultado em 16 de janeiro de 2021 
  38. Claridge, T. (2009). High-Resolution NMR Techniques in Organic Chemistry. [S.l.]: Elsevier. pp. 1–383 
  39. Remaud, G.S.; Silvestre, V.; Akoka, S. «Traceability in quantitative NMR using an electronic signal as working standard». Accreditation and Quality Assurance 
  40. Beyer, Tanja; Schollmayer, Curd; Holzgrabe, Ulrike (maio de 2010). «The role of solvents in the signal separation for quantitative 1H NMR spectroscopy». Journal of Pharmaceutical and Biomedical Analysis (em inglês) (1): 51–58. doi:10.1016/j.jpba.2009.12.007. Consultado em 19 de novembro de 2021 
  41. Malz, F.; Jancke, H. (agosto de 2005). «Validation of quantitative NMR». Journal of Pharmaceutical and Biomedical Analysis (em inglês) (5): 813–823. doi:10.1016/j.jpba.2005.01.043. Consultado em 19 de novembro de 2021 
  42. Westwood, Steven; Yamazaki, Taichi; Huang, Ting; Garrido, Bruno; Ün, Ilker; Zhang, Wei; Martos, Gustavo; Stoppacher, Norbert; Saito, Takeshi (8 de novembro de 2019). «Development and validation of a suite of standards for the purity assignment of organic compounds by quantitative NMR spectroscopy». Metrologia (em inglês) (6). 064001 páginas. ISSN 0026-1394. doi:10.1088/1681-7575/ab45cb. Consultado em 19 de novembro de 2021 
  43. Cullen, Christopher H.; Ray, G. Joseph; Szabo, Christina M. (setembro de 2013). «A comparison of quantitative nuclear magnetic resonance methods: internal, external, and electronic referencing: Comparison of quantitative NMR methods». Magnetic Resonance in Chemistry (em inglês): n/a–n/a. doi:10.1002/mrc.4004. Consultado em 19 de novembro de 2021 
  44. Monakhova, Yulia B.; Kohl-Himmelseher, Matthias; Kuballa, Thomas; Lachenmeier, Dirk W. (novembro de 2014). «Determination of the purity of pharmaceutical reference materials by 1 H NMR using the standardless PULCON methodology». Journal of Pharmaceutical and Biomedical Analysis (em inglês): 381–386. doi:10.1016/j.jpba.2014.08.024. Consultado em 19 de novembro de 2021 
  45. a b c d Akoka, Serge; Barantin, Laurent; Trierweiler, Michel (1 de julho de 1999). «Concentration Measurement by Proton NMR Using the ERETIC Method». Analytical Chemistry (em inglês) (13): 2554–2557. ISSN 0003-2700. doi:10.1021/ac981422i. Consultado em 19 de novembro de 2021 
  46. a b Garrido, Bruno C.; de Carvalho, Lucas J. (fevereiro de 2015). «Nuclear magnetic resonance using electronic referencing: method validation and evaluation of the measurement uncertainties for the quantification of benzoic acid in orange juice: Electronic referencing in NMR: application in orange juice analysis». Magnetic Resonance in Chemistry (em inglês) (2): 135–141. doi:10.1002/mrc.4166. Consultado em 19 de novembro de 2021 

[1]

Ligações externas[editar | editar código-fonte]

  1. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome :12