Frações parciais

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Question book-4.svg
Esta página cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde novembro de 2014). Ajude a inserir referências. Conteúdo não verificável poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

Frações parciais é uma recurso matemático muito utilizado na simplificação de problemas envolvendo integrais e transformadas de Laplace.

Dada uma função temos:

1) Decomposição de fator linear com multiplicidade n.

[1]

Exemplo:

Decompomos o denominador acima no maior número de frações possíveis.

A fim de criar um sistema envolvendo os coeficientes e o numerador original, reagrupamos os termos.

Resolvendo o sistema, temos que A= 1/4 B= -1/4 e C= 1/2

Portanto a nova fração é dada por:

[2]

2) Decomposição de um fator quadrático irredutível com multiplicidade n:

3) Podemos também decompor frações em denominadores simples, primos e irredutíveis:

Exemplo:

[3]

4) Outra técnica utilizada é a técnica dos limites ou método de Heaviside:

Exemplo:

Podemos reescrever a fração como;

Agora usamos os limites para determinar os coeficientes.

Logo a nova expressão é dada por:

[4]


Frações parciais em Laplace [5][editar | editar código-fonte]

Muitas vezes, ao tentar calcular a transformada inversa de uma F(s), nos deparamos com um polinômio de alto grau não sendo fácil determinar a sua f(t). A partir disso, um método para solucionar essa questão é o uso de frações parciais, que possibilitam reescrever o polinômio de uma maneira em que ele tenha apenas um grau ou dois, sendo fácil, então, determinar sua transformada inversa.

Por exemplo:

Sendo

Utilizando frações parciais podemos escrevê-la como

e então como

Chegando, então, ao seguinte sistema:

Ao resolvê-lo, chegamos em e

Dessa forma, que é equivalente à


Com isso, ao utilizarmos frações parciais, chegamos em uma expressão que contém apenas transformadas inversas conhecidas e tabeladas, podendo ser facilmente determinada:


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  1. «Faça exemplos com O Monitor». omonitor.io. Consultado em 22 de março de 2016 
  2. «Exemplo de Matemática Aplicada II UFRGS» (PDF). Esequia Sauter - UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada 
  3. «Fractions of integers - Wikipedia» 
  4. «Exemplo de Matemática Aplicada II UFRGS» (PDF). Esequia Sauter - UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada 
  5. SAUTER, Esequia; SOUTO DE AZEVEDO, Fabio; STRAUCH, Irene (2018). Transformada de Laplace - Um Livro Colaborativo. Porto Alegre: [s.n.]