Função característica (probabilidade)

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde novembro de 2012). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Em probabilidade, a função característica de uma variável aleatória X é a função

quando esta esperança existe, em que t é o argumento (real ou imaginário) da função característica e i é uma raiz quadrada de menos um.

Toda variável aleatória contínua ou discreta possui função característica, que é calculada, respectivamente, por:

Através da Fórmula de Euler, podemos escrever:

E, assim, o cálculo da esperança, para os casos contínuo e discreto, fica:

A função característica existe para todo A função característica é também chamada de Transformada de Fourier de f .

Definição formal[editar | editar código-fonte]

Se X é uma variável aleatória simples (=ou seja, não é um vetor aleatório?), então [1]

arbitrário.

Propriedades[editar | editar código-fonte]

Cada uma das funções é contínua e limitada[2].

Exemplos de usos[editar | editar código-fonte]

  • (Teorema da continuidade de Lévy) Sejam e vetores aleatórios em Então

converge em distribuição para se e somente se </math> é contínua e limitada[3].

Ver também[editar | editar código-fonte]

Referências

  1. Brummelhuis, Raymond. Mathematical Methods. Lecture notes. Chapter 7- Characteristic functions of random variables. Disponível em: <http://www.ems.bbk.ac.uk/for_students/msc_finEng/math_methods/lecture7.pdf>. Acesso em: 12 de junho de 2011.
  2. VAN DER VAART, A. (1998). Asymptotic statistics. New York: Cambridge University Press. Página 13.
  3. VAN DER VAART, A. (1998). Asymptotic statistics. New York: Cambridge University Press.Página 13.
Wiki letter w.svg Este artigo é um esboço. Você pode ajudar a Wikipédia expandindo-o. Editor: considere marcar com um esboço mais específico.