Função gama

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

[1] [2] [3]

NoFonti.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Maio de 2012). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
A função gama[4] nos números reais.

Em matemática, a função gama (representada pela letra maiúscula grega ) é uma extensão da função factorial para o conjunto dos números reais e complexos, com o argumento subtraído em 1. Se n é um inteiro positivo define-se da seguinte forma:

Esta função é estendida por uma continuação analítica (ou extensão analítica) para todos números complexos com, não estando definida apenas nos inteiros não-positivos (em que a função tem polos simples). Portanto, para números complexos com a parte real positiva a definição segue por uma integral imprópria convergente:

Podemos encontrar a demonstração da convergência desta integral no artigo de Emil Artin, The Gamma Function.

A função gama é debutante em diversas funções de distribuição probabilísticas, sendo assim encontra aplicações nos campos da probabilidade, estatística e combinatória.

Motivação[editar | editar código-fonte]

A função gama pode ser vista como solução do seguinte problema de interpolação:

"Encontrar uma curva suave que conecta os pontos (x , y) dados por y = (x − 1)! em que x é um inteiro positivo."

Esboçando em um gráfico os primeiros números fatoriais fica claro que a curva pode ser desenhada, mas seria preferível ter um expressão analítica que descreve precisamente a curva, na qual o número de operações não dependa do tamanho  de x. A simples fórmula recursiva para o fatorial x! = x × ... × 2 × 1,  não pode ser usada para obter valores fracionários, pois é válida apenas quando x é um número natural. No entanto, foi demonstrado por Euler que não há uma expressão analítica convencional para fatorial, no sentido que não pode ser a combinação finita (com um número finito de termos) de somas, potências, produtos, funções exponenciais e logaritmos, demonstrado em seu artigo intitulado "Sobre progressões transcendentais, nas quais o termo geral não pode ser expresso algebricamente", ("De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt"). A função gama é uma solução que não só resolve este problema, mas também possuí distinguíveis propriedades entre as candidatas, como é mostrado no Teorema de Bohr-Mollerup.

Prova[editar | editar código-fonte]

É fácil perceber, através da regra da cadeia e de recursos da integração imprópria, que

Usando o método da substituição, de modo que , (t>0 e fixo), obtém-se:

Derivando-se em relação a e aplicando a fórmula de Leibniz:

Utilizando o mesmo processo novamente:

Derivando sucessivas vezes em relação a :

Para

Dessa forma, tem-se uma função fatorial definida para quaisquer valores reais positivos , de modo que:

Contudo, consagrou-se o uso de uma definição levemente destoante, a Função Gama de Euler, tal que

Assim,

E, analogamente, para números inteiros,

Funções relacionadas[editar | editar código-fonte]

  • A função beta, também chamada de Integral de Euler de primeiro tipo, pode ser definida por uma razão de funções gama:

Propriedades[editar | editar código-fonte]

Propriedade Fundamental[editar | editar código-fonte]

A propriedade mais importante da função gama é dada por

Que pode ser obtida pela integração por partes da definição da função gama

O lado esquerdo do resultado é igual a zero. A integral do lado direito do resultado é a própria definição da função gama.
Segue desta propriedade que

E também

Para números inteiros, a recursividade da propriedade cai na definição do fatorial.
Esta propriedade é válida também para números no domínio dos complexos.

Domínio da Função Gama[editar | editar código-fonte]

  • A integral que define a Função Gama converge para todo
  • Assim um intervalo de definição da Função é:
  • Prova

Escrevendo A função como:

A Segunda integral converge muito rápido pelo fator que tende a zero quando tende a infinito, neutralizando qualquer crescimento que o termo apresente. Na primeira integral para a função fica controlada. Logo a convergência dessa integral vai depender apenas do termo .

  • Para
  • Para
  • Para temos que , então:

Pela propriedade fundamental, pode-se estender o domínio da função gama em intervalos que contém números negativos. Define-se então que

hhhh

Para números no intervalo z ∈ (-1, 0), como z < 0, vê-se que

E também que

Continuando com o mesmo processo, o domínio da função gama passa a ser

- {0, -1, -2, -3, ...}

Um resultado de interesse em algumas aplicações calculado pela Função é

  • Demonstração

Fazendo , obtemos logo:

Utilizando a técnica de Liouville:

A última integral é uma integral dupla facilmente calculada em coordenadas polares:

Utilizando uma troca de variáveis é fácil chegar ao resultado.

Sendo assim:

Ligações externas[editar | editar código-fonte]

Referências

  1. Boyce e DiPrima. Equações Diferenciais Elementares e Problemas de Valores de Contorno, editora LTC, 9ª edição, 2010.
  2. Dennis G. Zill, Michael R. Cullen; Equações Diferenciais, vol 1; Editora Makron Books do Brasil;
  3. Davis, Philip J.; Abramowitz, Milton; Stegun, Irene. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 1972.
  4. «Confira este exemplo e faça outros com O Monitor». omonitor.io. Consultado em 2016-03-19. 
Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.