Função implícita

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

No cálculo, a diferenciação implícita é um meio de derivar equações implícitas, ou seja, funções onde y não está definido como função explícita de x, por exemplo: . Equações onde não temos de um modo explicito uma relação entre as duas variáveis pela qual possamos escrever

Funções implícitas[editar | editar código-fonte]

Uma função explícita é aquela que podemos escrever por exemplo: onde .

Já a função implícita é aquela onde temos por exemplo:



No caso essa equação não está em termos de x, nem de y. Mas ao resolver em termos de y obtemos:




Ou seja, é uma forma implícita de definirmos tanto a função como a função . Muitas vezes, não é sequer possível obter uma forma explícita de em relação a , como no caso da equação .

Diferenciação implícita[editar | editar código-fonte]

Quando temos uma função implícita e precisamos derivá-la, o que devemos fazer? Devemos derivar tudo em relação à variável dependente. Isso significa que, se quisermos derivar em relação a , faremos as derivadas levando em conta a variável dependente como . Já se quisermos derivar em relação a , tomaremos a variável dependente como sendo .


Exemplo:


Derivemos a função em relação a x.




Ao derivarmos temos de ter o cuidado de que nosso é a função em si, ou seja, ele é a variável que representa toda a função. Temos então de usar a Regra da cadeia nele.



Deriva-se o restante normalmente



Isolamos o quociente de diferenciais que representa a derivada



Simplificamos e obtemos finalmente a derivada.



A ideia ao realizarmos a diferenciação implícita é justamente derivarmos sempre em relação à variável independente e, ao nos depararmos com a variável dependente, trabalharmos a mesma com a regra da cadeia, já que ela representa uma função, isto é, ao derivarmos estamos derivando simplesmente o quadrado da variável dependente, mas ao derivarmos , estamos derivando a função contida nessa variável, a função que a variável representa, ou seja, .


Isolar nem sempre é uma tarefa fácil. Por isso, recorremos à diferenciação implícita. Ao derivarmos esse , estamos justamente aplicando a regra da cadeia, ou seja: