Isomorfismo (teoria das categorias)
Um isomorfismo (ou iso), no contexto de teoria das categorias, é uma seta invertível. Mais precisamente, uma seta numa categoria é um isomorfismo se e somente se existe tal que e . Nesse caso, , a inversa de , é única, e denotada por .
Toda seta iso é mono e epi, embora o contrário não seja necessariamente verdade. Por exemplo, na categoria formada por dois objetos e , os morfismos identidade, e um único morfismo , é um monomorfismo e um epimorfismo, porém não é um isomorfismo.
Em conjuntos podemos pensar uma seta iso como sendo uma função bijetora.
Igualdade e isomorfismo
[editar | editar código-fonte]Isomorfismo é uma das noções mais importantes em uma categoria. Por isso, é comum encontrar em várias demonstrações e construções as expressões único, a menos de isomorfismo e único, a menos de único isomorfismo.
O que estas expressões querem dizer é que determinado objeto pode existir como várias versões, mas todas estas versões são isomórficas. Na noção mais forte, este isomorfismo entre dois objetos também é único.
Para efeitos práticos, o isomorfismo faz com que objetos isomórficos comportem-se da mesma forma. Tudo que pode ser feito com um deles pode ser feito com o outro - basta compor setas com o isomorfismo entre estes objetos.
Exemplos
[editar | editar código-fonte]- Na teoria dos corpos, o fecho algébrico existe é único a menos de isomorfismo. Por exemplo, o corpo pode ter como fecho algébrico um determinado conjunto de matrizes 2x2 ou um conjunto de pares ordenados (a,b) no qual é definida uma operação de produto, mas estas duas representações de são isomórficas. O isomorfismo, porém, não é único.
- Na construção de um corpo ordenado arquimediano completo, pode-se usar os cortes de Dedekind ou classes de equivalência de sequências de Cauchy. Estas duas representações de na categoria dos corpos são isomórficas, e o isomorfismo é único - diz-se portanto que o corpo ordenado arquimediano completo nesta categoria é único a menos de um único isomorfismo.
Bibliografia
[editar | editar código-fonte]- ASPERTI, Longo. Categories, Types, and Structures. The MIT Press, Cambridge, Massachusetts, London.
- BARR, Michael; WELLS, Charles. Category Theory for Computing Science, Prentice Hall, London, UK, 1990.
- MAC LANE, Saunders. Categories for the Working Mathematician. 2 ed. Graduate Texts in Mathematics 5. Springer, 1998. ISBN 0-387-98403-8.
Ver também
[editar | editar código-fonte]- Matemática
- Ciência da computação
- Isomorfismo (teoria dos grupos) - caso particular para a categoria dos grupos