Lemniscata de Bernoulli

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
A Lemniscata de Bernoulli

A Lemniscata de Bernoulli é a curva algébrica do quarto grau de equação cartesiana:

A lemniscata também pode ser descrita pelas coordenadas polares abaixo,

pela respectivas coordenadas bipolares,

ou pela equação paramétrica:

Coordenadas bipolares

A curva tem a forma similar ao numeral 8 e o símbolo de infinito ().

A lemniscata foi descrita primeiramente por Jakob Bernoulli em 1694 como uma modificação da elipse, que é o lugar geométrico de pontos para qual a soma das distâncias para cada um de dois focos fixos é uma constante[1] . A Oval de Cassini, por sua vez, é o lugar de pontos para os quais o produto destas distâncias é constante. No caso onde a curva atravessa o ponto no meio caminho entre os focos, a oval é uma lemniscata de Bernoulli.

Bernoulli chamou isto de lemniscus que em latim significa "faixa suspensa". A lemniscata pode ser obtida como o inverso geométrico de uma hipérbole, com o círculo de inversão centrado no centro da hipérbole (bissetriz de seus dois focos).

Derivadas[editar | editar código-fonte]

Cada derivada abaixo foi calculada usando derivações implícitas.

Com em função de [editar | editar código-fonte]

Com em função de [editar | editar código-fonte]

Curvatura[editar | editar código-fonte]

Quando as duas primeiras derivadas são conhecidas, a curvatura é facilmente calculada:

O sinal a ser escolhido deve ser de acordo com a direção de movimento ao longo da curva. A lemniscata tem a propriedade da qual a magnitude da curvatura em qualquer ponto é proporcional à distância daquele ponto da origem.

Comprimento de arco como parâmetro e funções elípticas[editar | editar código-fonte]

A determinação do comprimento de arco como parâmetro da lemniscata levou às integrais elípticas, descobertas durante o século XVIII. Por volta de 1800, essa função elíptica era estudada por Carl Friedrich Gauss. Largamente inédito na ocasião, mas foram feitas insinuações a elas nas notas de sua obra "Disquisitiones Arithmeticae".

Seção[editar | editar código-fonte]

É possível obter a curva, secionando-se um torus por meio de um plano paralelo ao eixo de revolução. A tangência do perímetro interno origina uma Lemniscata no contorno da seção[2] .

Referências

  1. Carvalho, Benjamim - Desenho Geométrico. Ed. Ao Livro Técnico, São Paulo: 1982, p. 316
  2. [1], Imagem, acessada em 08-07-2011

Ver também[editar | editar código-fonte]