Matriz singular

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Question book.svg
Este artigo ou secção não cita fontes confiáveis e independentes (desde Agosto de 2013). Ajude a inserir referências.
O conteúdo não verificável pode ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

Em matemática, uma matriz quadrada é dita singular quando não admite uma inversa.

Propriedades[editar | editar código-fonte]

  • Uma matriz é singular se e somente se seu determinante é nulo. Por exemplo, se uma matriz quadrada tiver pelo menos uma linha ou coluna nula, terá determinante zero (0), o que caracteriza uma matriz singular.
  • Uma matriz é singular se e somente se existir um vetor não nulo tal que:
  • Se uma matriz é singular, então o problema ou não possui solução ou possui infinitas soluções.

Exemplos[editar | editar código-fonte]

Existem 10 matrizes singulares com dimensão 2X2 compostas dos números 0 e 1:

Mais exemplos de matrizes singulares podem ser obtidos multiplicando-se as matrizes acima por escalares reais.


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.