Λ (lambda) indica a constante cosmológica como parte de um termo da energia escura que permite conhecer o valor atual da aceleração com que o universo se expande. A constante cosmológica se descreve em termos de , a fração de densidade de energia de um universo plano. Na atualidade, 0,74, o que implica que vale 74% da densidade de energia do presente universo.
A matéria escura fria é o modelo onde a matéria escura se explica como fria (quer dizer não termalizada), não-bariônica, sem colisões. Este componente se encarrega de 26% da densidade da energia do atual universo. Os 4% restante é toda a matéria e energia que compõe os átomos e os fótons que são os blocos que constroem os planetas, as estrelas, as nuvens de gás no universo, etc, ou seja, todos os componentes astronomicamente visíveis do universo.
Estas são as suposições mais simples para um modelo consistente e físico da cosmologia. Entretanto, ΛCDM é tão só um modelo. Os cosmólogos antecipam que todas estas presunções não serão conhecidas exatamente, até que não se conheça mais sobre a física fundamental. Particularmente, a inflação cósmica prediz curvatura espacial ao nível de 10−4 a 10−5. Também seria surpreendente que a temperatura da matéria escura fosse zero absoluto. Por outra parte, ΛCDM não diz nada sobre a origem física fundamental da matéria escura, da energia escura e do espectro quase escalar-invariante das perturbações primordiais da curvatura: nesse sentido, é simplesmente uma "parametrização útil da ignorância".
Representação da expansão do universo conforme o Modelo Lambda-CDM
O modelo tem seis parâmetros. O parâmetro de Hubble determina o índice da expansão do universo, assim como a densidade crítica para a curvatura do universo, ρ0. As densidades para os bárions, a matéria escura e a energia escura se dão como ρ0, que são o quociente da densidade verdadeira à densidade crítica: por exemplo . Posto que o modelo de ΛCDM assume um universo plano, a soma destas densidades a uma, e a densidade da energia escura não é um parâmetro livre. A profundidade óptica na reionização determina o deslocamento ao vermelho da emissão por reionização. A informação sobre as flutuações da densidade é determinada pela amplitude das flutuações primordiais (da inflação cósmica) e do índice espectral, que mede como as flutuações alteram-se com a escala (o ns = 1 corresponde a um espectro escalar-invariante).
Os erros cotizados são 1σ: ou seja, há estatisticamente uma probabilidade de 68% que o valor verdadeiro esteja dentro dos limites superiores e mais baixos do erro. Os erros não são gaussianos, e têm sido derivados usando uma análise de cadeias de Markov Monte Carlo (MCMC) pela colaboração de Wilkinson Microwave Anisotropy Probe (Spergel e outros. 2006) o qual também utiliza os dados da supernova de Sloan Digital Sky Survey e da Supernova tipo Ia.
As extensões possíveis do modelo mais simples de ΛCDM permitem a quintessência fazendo que seja mais uma constante cosmológica. Neste caso, a equação de estado da energia escura é diferente de −1. A inflação cósmica prediz as flutuações do tensor (ondas gravitacionais). Sua amplitude é dada por parâmetros como o quociente tensor-a-escalar, que é determinado pela escala da energia da inflação. Outras modificações permitem curvatura espacial ou um índice espectral corrente, que se vêem geralmente como contrárias com a inflação cósmica. Permitir estes parâmetros na teoria aumentará geralmente os erros nos parâmetros tabulados acima, e pode também alterar a posição dos valores observados.
Estes valores são consistentes com uma constante cosmológica, um valor W = 1, e nenhuma curvatura espacial . Há uma certa evidência para um índice espectral corrente, mas não é estatisticamente significativo. As expectativas teóricas sugerem que o quociente tensor-a-escalar r esteja entre 0 e 0,3, e assim que se devem provar este valor em um futuro próximo.