Octoniões

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Conjuntos de números


Naturais
Inteiros
Racionais
Reais
Imaginários
Complexos
Números hiper-reais
Números hipercomplexos

Quaterniões
Octoniões
Sedeniões
Complexos hiperbólicos
Quaterniões hiperbólicos
Bicomplexos
Biquaterniões
Coquaterniões
Tessarines

Na matemática, os octoniões (português europeu) ou octônios (português brasileiro) são uma extensão não-associativa dos quaterniões. Sua álgebra da divisão formada de 8 dimensões sobre os números reais é o mais extenso que pode ser obtido da construção de Cayley-Dickson. A álgebra do octoniões é frequentemente denotada como .

Possivelmente por não oferecerem uma multiplicação associativa, os octoniões recebem às vezes menos atenção do que os quaterniões. Apesar desta falta da popularidade, eles são relacionados a um número de estruturas excepcionais na matemática, entre elas os grupos excepcionais de Lie. Octoniões são também promissores na física, por exemplo, para avanços na teoria das cordas.

Definição[editar | editar código-fonte]

Os octoniões podem ser definidos como octetos (ou 8-truplas) de números reais. Cada octonião é uma combinação linear real dos octoniões unitários e . Isto é, cada octonião pode ser escrito na forma

com coeficientes reais .

A adição dos octoniões é realizada somando-se os coeficientes correspondentes, como com os números complexos e os quaterniões. Pela linearidade, a multiplicação dos octoniões é completamente determinada pela tabela da multiplicação para os octoniões unitários dados abaixo

1 i j k l il jl kl
i -1 k -j il -l -kl jl
j -k -1 i jl kl -l -il
k j -i -1 kl -jl il -l
l -il -jl -kl -1 i j k
il l -kl jl -i -1 -k j
jl kl l -il -j k -1 -i
kl -jl il l -k -j i -1

A base para os octoniões dada aqui não é quase tão universal quanto a base padrão para os quaterniões; entretanto, quase todas as outras diferem dessa somente quanto à ordem e o sinal.

Observa-se que a multiplicação não é associativa: i(jl) = -kl, mas (ij)l = kl.

Conjugado, norma e inverso[editar | editar código-fonte]

O conjugado de um octonião

é dado por

A conjugação é uma involução de e satisfaz (note a mudança de ordem).

A parte real de é definida como e a parte imaginária como . O conjunto de todos os octoniões puramente imaginários forma um subespaço de 7 dimensões de ,

denotado . A norma do octonião é definida como

A raiz quadrada é definida aqui como , que é sempre um número real não negativo:

Essa norma concorda com a norma euclidiana padrão em .

A existência de uma norma em implica a existência de inversos para cada elemento diferente de

zero de . O inverso de é dado por

Isso satisfaz .

Ver também[editar | editar código-fonte]