Portal:Probabilidade e estatística

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Portal:PeE)
Ir para: navegação, pesquisa
Portal da Probabilidade e Estatística
Fisher iris versicolor sepalwidth.svg

A teoria da Probabilidade é o estudo matemático na quantificação da aleatoriedade e incerteza de eventos na natureza; a Estatística é a ciência da coleta, descrição e análise de dados. Há uma interligação entre essas duas áreas de ciências que lidam com o que é aleatório.

Esses dois campos de estudo estão relacionados com outros tópicos de matemática, como algoritmos, ciência da computação e lógica. Também são fundamentais para a teoria dos jogos, a biologia, a economia, a sociologia e a física, entre outros.

Sinta-se à vontade para participar. Em caso de dúvida ou se tiver algum comentário, por favor visite a página de discussão.

Mostrar novas seleções abaixo (purgar)
Artigo em Destaque
Sabia que...
Ilustração da LGN, usando sorteio de bolas de uma urna. Seja um sorteio de bolas de uma urna contendo bolas azuis e bolas vermelhas na mesma proporção. Como quantidade de bolas azuis e bolas vermelhas dentro da urna são iguais, a porcentagem de vezes que as bolas azuis ou as bolas vermelhas serão sorteadas irá convergir para 0,5. Esse número é exatamente a proporção de bolas azuis e bolas vermelhas dentro da urna.

A lei dos grandes números (LGN) é um teorema fundamental da teoria da probabilidade, que descreve o resultado da realização da mesma experiência repetidas vezes. De acordo com a LGN, a média aritmética dos resultados da realização da mesma experiência repetidas vezes tende a se aproximar do valor esperado à medida que mais tentativas se sucederem. Em outras palavras, quanto mais tentativas são realizadas, mais a probabilidade da média aritmética dos resultados observados se aproximar da probabilidade real.

A LGN tem aplicações práticas na ciência de modo geral, tal como na agricultura e na economia, dentre outras áreas importantes. É possível descobrir por meio de numerosas observações e de experiências suficientes a probabilidade de um evento natural acontecer (por exemplo, a probabilidade de chover) ou de uma fração de uma população satisfazer a uma condição (por exemplo, a probabilidade de ser produzida uma determinada quantidade de peças defeituosas em uma linha de montagem).

  • ...que, como um estudante de pós-graduação na UC Berkeley em 1939, George Dantzig resolveu duas questões até então não respondidas relacionadas com o lema de Neyman-Pearson, porque ele erroneamente pensou que eles eram um dever de casa?
  • ...que um resultado do problema de aniversário é que entre um grupo de 23 (ou mais) pessoas escolhidas aleatoriamente, há mais de 50% de probabilidade de que duas pessoas tenham nascido no mesmo dia do ano?
  • ...que o termo viés não é necessariamente pejorativo na estatística, uma vez que os estimadores tendenciosos podem ter propriedades desejáveis ​​(como um erro quadrático médio menor do que qualquer outro estimador não tendencioso) e que, em casos extremos, os únicos estimadores não tendenciosos não estão nem mesmo dentro do casco convexo do espaço de parâmetro?
  • ...que a distribuição de Cauchy é um exemplo de uma distribuição que não tem média, variância ou momentos superiores definidos?
Imagem em destaque
Biografia destacada
Monte-Carlo01.gif
Crédito: Jirah


Ilustração do Método Estatístico para o Cálculo de Pi por Monte-Carlo.

Jakob Bernoulli

Jakob Bernoulli (Basileia, 27 de dezembro de 1654 — Basileia, 16 de agosto de 1705), foi o primeiro matemático a desenvolver o cálculo infinitesimal para além do que fora feito por Newton e Leibniz, aplicando-o a novos problemas.


Como ajudar?
Nuvola apps korganizer.svg
Artigos audíveis
Projetos relacionados

Artigos que possuem versão audível Sound-icon.svg:


Probabilidade e Estatística em outros projetos Wikimedia
Categorias