Quinto problema de Hilbert

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

O quinto problema de Hilbert é um problema matemático da lista de problemas proposta em 1900 pelo matemático David Hilbert.[1]

A proposta original de Hilbert era:

Desenvolver uma teoria dos grupos contínuos de transformações sem assumir a hipótese de diferenciação nas funções que definem o grupo

A teoria dos grupos contínuos de transformações, em nomenclatura moderna, é a teoria dos grupos de Lie.[2]

Um grupo de Lie é um objeto matemático G dotado tanto de uma estrutura de grupo quanto de superfície,[Nota 1] em que a operação de multiplicação do grupo [Nota 2] é suave. Exemplos de grupos de Lie são o espaço euclidiano real com a operação de soma (\mathbb{R}^n, +)\,, o círculo S1,[Nota 3] o toro Tn = S1 x ... x S1, o espaço das matrizes inversíveis nxn em \mathbb{R}\, ou \mathbb{C}\, Gl(n, F),[Nota 4] e o espaço das isometrias em três dimensões E3.[3]

O nome grupo de Lie faz referência ao matemático norueguês Sophus Lie (1842-1899) que estudou, no final do século XIX, sistemas de equações diferenciais, em particular transformações do espaço euclidiano real definidas por equações diferencias e como a composição destas transformações se relacionava ao par original de uma forma diferenciável. A noção abstrata de um grupo de Lie foi se desenvolvendo de forma gradual, até ser estabelecida por Mayer e Thomas em 1935. [4]


O quinto problema de Hilbert tinha uma resposta negativa, porém, com alguns ajustes, torna-se possível dar uma resposta. Conforme disse Andrew Gleason:[5]

Muitos matemáticos não estão cientes de que o problema, como proposto por Hilbert, não é o problema que vem sendo chamado de quinto problema de Hilbert. Foi mostrado bem cedo que o que ele estava propondo às pessoas era falso. Ele perguntou se a ação de um grupo localmente euclidiano sobre uma superfície era sempre analítica, o que é falso... É preciso mudar a questão consideravelmente para chegar à pergunta que ele estava interessado em saber se era verdade. Eu acho que isto é interessante. É também parte de como a teoria matemática se desenvolve. As pessoas tem ideias sobre como as coisas devem ser, e propõem isto como questões a serem trabalhadas, mas depois isto não se mostra válido.

Quando se tornou clara a noção de um grupo topológico, o quinto problema passou a ser entendido como a seguinte questão:

É possível introduzir coordenadas analíticas (ou seja, coordenadas em que a regra de multiplicação é dada por funções analíticas) em alguma vizinhança da identidade de um grupo localmente euclidiano?

Esta formulação torna o problema mais concreto, mas também o restringe, pois não considera todos os grupos de transformações.[2]

O resultado final, após passos fundamentais dados por von Neumann, Pontryagin, Chevalley e Mal'cev, foi dado por Gleason, Montgomery e Zippin em 1952, e estendido no ano seguinte por Yamabe. John von Neumann, em 1933, resolveu o problema para grupos compactos, Lev Pontryagin resolveu no ano seguinte o caso de grupos comutativos, Chevaley, em 1941 resolveu para grupos solúveis e Mal'cev, em 1946, para grupos solúveis conexos e localmente compactos. A resolução final veio com o trabalho de Andrew Gleason, Deane Montgomery e Leo Zippin, e em 1953 Hidehiko Yamabe obteve a resposta final para o quinto problema de Hilbert.[2]

Junto com o trabalho de Iwasawa, pode-se afirmar:[2]

Para todo grupo G localmente compacto e toda vizinhança U da identidade, existe uma vizinhança da identidade V contida em U que é resultado do produto direto de um grupo de Lie localmente conexo L e um grupo compacto. Além disto, se G não for totalmente desconexo, então a vizinhança V [Nota 5] pode ser escolhida tal que em toda decomposição desta forma o grupo local de Lie L tem dimensão positiva.[6]

Notas e referências

Notas

  1. Intuitivamente, uma superfície pode ser imaginada como um subconjunto de n dimensões imerso em um espaço de m dimensões, que se parece localmente com o espaço de n dimensões, porém levemente distorcido, como a superfície de uma esfera ou de um toro no espaço tridimensional.
  2. Multiplicação aqui é entendida no sentido da teoria dos grupos, ou seja, é uma operação binária associativa, com elemento neutro e elementos inversos; nos exemplos, a "multiplicação" em \mathbb{R}^n\, é a soma de vetores.
  3. Com a operação de "soma de ângulos".
  4. O texto de Richardson, incorretamente, considera este grupo de matrizes como subconjunto do espaço Fn.
  5. Na fonte consultada, está escrito erroneamente U.

Referências

  1. David Hilbert, Mathematical Problems., Bulletin of the American Mathematical Society, vol. 8, no. 10 (1902), pp. 437-479. Earlier publications (in the original German) appeared in Göttinger Nachrichten, 1900, pp. 253-297, and Archiv der Mathematik und Physik, 3dser., vol. 1 (1901), pp. 44-63, 213-237.
  2. a b c d V. M. Gluskov, The structure of locally compact groups and Hilbert's fifth problem, publicado em V. S. Carin (ed.), Nine papers on foundations, algebra, topology, functions of a complex variable, American Mathematical Society, 31 de dezembro de 1960, p.55 [google books]
  3. Ken Richardson, Professor of Mathematics, Department of Mathematics, Texas Christian University; Seminar Notes, Lie Groups Seminar Notes, 1. Lie Groups, Definition 1.1 e exemplos, p.1 [pdf]
  4. John F. Price, Lie Groups and Compact Groups (1977), Chapter 2, Lie groups and Lie algebras, Notes, p.52 [google books]
  5. Juliette Kennedy, Can the Continuum Hypothesis be solved? [https://www.ias.edu/about/publications/ias-letter/articles/2011-fall/continuum-hypothesis-kennedy [em linha]
  6. Gluskov, p.56


Ver também[editar | editar código-fonte]