Saltar para o conteúdo

Receptor D2 de dopamina

Origem: Wikipédia, a enciclopédia livre.
DRD2
Estruturas disponíveis
PDBPesquisa Human UniProt: PDBe RCSB
Identificadores
Nomes alternativosDRD2
IDs externosOMIM: 126450 HomoloGene: 22561 GeneCards: DRD2
Doenças Geneticamente Relacionadas
depressão nervosa[1]
Targeted by Drug
remoxipride[2]
benzquinamide, LP-12, LP-211, LP-44, Ropinirol, Rotigotina, Vilazodona, 7-hydroxy-2-(di-N-propylamino)tetralin, bromocriptina, dopamina, pergolide, pramipexole, quinelorane, quinpirole, sumanirole, apomorfina, aripiprazol, Brexpiprazol, cabergolina, lisurida, piribedil, roxindole, Tergurida, amissulprida, blonanserin, (+)-butaclamol, clorpromazina, clozapina, domperidona, eticlopride, Flupentixol, flufenazina, haloperidol, L-741,626, loxapina, mesoridazine, nafadotride, olanzapina, perospirone, perphenazine, pimozida, pipotiazine, Proclorperazina, promazina, quetiapina, raclopride, risperidona, sertindole, (RS)-sulpiride, levosulpiride, trifluoperazina, ziprasidona, zotepina[3]
Wikidata
Ver/Editar Humano

O receptor D2 de dopamina, também conhecido por D2R, é uma proteína que, em seres humanos, é codificada pelo gene DRD2.

Não só é o principal receptor da maioria dos medicamentos antipsicóticos, como foi através destes medicamentos que foi identificado em 1975. Na busca pelo mecanismo fisiopatológico da psicose, a equipe procurou identificar os locais que se ligavam ao medicamento antipsicótico haloperidol.[5]

Este gene codifica o subtipo D2 dos receptores de dopamina. Este receptor acoplado à proteína G inibe a actividade da adenilato ciclase, sendo portanto associado à variante Gi. Uma mutação missence neste gene causa distonia mioclónica; outras mutações têm sido associadas com a esquizofrenia.[6]

O splicing alternativo deste gene resulta em duas variantes de transcriptos que codificam diferentes isoformas,[7] D2S (D2-short) e D2L (D2-long).[5][8]

A variante longa (D2L) funciona como um tradicional receptor pós-sináptico. Já a versão curta (D2S) trata-se de um receptor pré-sináptico, que funciona como um autorreceptor, ou seja, pode aumentar ou reduzir a quantidade de dopamina libertada para o espaço extracelular, dependendo da quantidade presente.[8]

A ativação do receptor de dopamina D2S costuma causar queda na liberação de Dopamina e consequentemente uma inibição sob a atividade locomotora. A ativação de seu splicing alternativo, D2L estimula a locomoção. O receptor de dopamina D2 é o principal autorreceptor de dopamina e está envolvido na regulação da cadência de disparos neuronais, síntese de dopamina e liberação de dopamina.[9][10]

  • Dentro do sistema nervoso central os receptores D2 parecem desempenhar diversos papéis, são extremamente envolvidos na via de recompensa e reforço. Isso faz destes receptores, importantes tópicos em pesquisas sobre dependência química.[11][12][13][14] Aparentam também serem de extrema importância para os mecanismos de aprendizado e memória.[15][16] E por fim demonstra ter um papel central em reações psicóticas observadas em esquizofrenia e transtorno bipolar.[17][18]
  • Fora do Sistema Nervoso Central apresenta funções como a regulação hormonal, atuando na secreção de prolactina e de aldosterona. Além de regulação hormonal também atua na regulação da função renal junto aos receptores D1 e D4, na pressão sanguínea; vasodilatação; e motilidade gastrointestinal.[19][20][21]

Mecanismo de sinalização

[editar | editar código-fonte]

A classe de receptores D2 produz o efeito inibtório sob a atividade da adenilato ciclase, uma vez que são receptores acoplados à proteína Gαi.[22] A sinalização do receptor D2 pode mediar a atividade da quinase de proteína B, da arrestina beta 2 e do GSK-3, e a inibição dessas proteínas resulta na inibição da hiperlocomoção em ratos tratados com anfetaminas. O recrutamento da arrestina beta é mediada por quinases de proteínas G que fosforilam e inativam os receptores de dopamina após a estimulação. Embora a arrestina beta desempenhe um papel na dessensibilização do receptor, também pode ser essencial na mediação dos efeitos downstream dos receptores de dopamina. Foi demonstrado que a arrestina beta forma complexos com a quinase de proteína ativada por sinais extracelulares (MAP), levando à ativação das quinases reguladas por sinal extracelular. A estimulação do receptor de dopamina D2 resulta na formação de um complexo proteico Akt/Beta-arrestin/PP2A que inibe a Akt por meio da fosforilação da PP2A, desinibindo assim o GSK-3.[23]

Referências

  1. «Doenças geneticamente associadas a DRD2 ver/editar referências no wikidata» 
  2. «Drogas que interagem fisicamente com Dopamine receptor D2, isoform CRA_c ver/editar referências no wikidata» 
  3. «Drogas que interagem fisicamente com Dopamine receptor D2 ver/editar referências no wikidata» 
  4. «Human PubMed Reference:» 
  5. a b Madras, Bertha K. (2013). «History of the discovery of the antipsychotic dopamine D2 receptor: a basis for the dopamine hypothesis of schizophrenia». Journal of the History of the Neurosciences. 22 (1): 62–78. ISSN 1744-5213. PMID 23323533. doi:10.1080/0964704X.2012.678199 
  6. «Gene Overview of All Published Schizophrenia-Association Studies for DRD2». Schizophrenia Research Forum (em inglês). 28 de outubro de 2008. Consultado em 22 de abril de 2025. Arquivado do original em 21 de fevereiro de 2009 
  7. «DRD2 dopamine receptor D2 [Homo sapiens (human)] - Gene - NCBI». www.ncbi.nlm.nih.gov (em inglês). 7 de abril de 2025. Consultado em 22 de abril de 2025 
  8. a b Beaulieu, Jean-Martin; Gainetdinov, Raul R. (março de 2011). «The physiology, signaling, and pharmacology of dopamine receptors». Pharmacological Reviews. 63 (1): 182–217. ISSN 1521-0081. PMID 21303898. doi:10.1124/pr.110.002642 
  9. De Mei, Claudia; Ramos, Maria; Iitaka, Chisato; Borrelli, Emiliana (1 de fevereiro de 2009). «Getting specialized: presynaptic and postsynaptic dopamine D2 receptors». Current Opinion in Pharmacology. Neurosciences (1): 53–58. ISSN 1471-4892. PMC 2710814Acessível livremente. PMID 19138563. doi:10.1016/j.coph.2008.12.002. Consultado em 13 de dezembro de 2023 
  10. Usiello, Alessandro; Baik, Ja-Hyun; Rougé-Pont, Françoise; Picetti, Roberto; Dierich, Andrée; LeMeur, Marianne; Piazza, Pier Vincenzo; Borrelli, Emiliana (novembro de 2000). «Distinct functions of the two isoforms of dopamine D2 receptors». Nature (em inglês) (6809): 199–203. ISSN 1476-4687. doi:10.1038/35041572. Consultado em 13 de dezembro de 2023 
  11. Hyman, Steven E.; Malenka, Robert C.; Nestler, Eric J. (21 de julho de 2006). «NEURAL MECHANISMS OF ADDICTION: The Role of Reward-Related Learning and Memory». Annual Review of Neuroscience (em inglês) (1): 565–598. ISSN 0147-006X. doi:10.1146/annurev.neuro.29.051605.113009. Consultado em 13 de dezembro de 2023 
  12. Leriche, L.; Bezard, E.; Gross, C.; Guillin, O.; Foll, B. L.; Diaz, J.; Sokoloff, P. «The Dopamine D3 Receptor: A Therapeutic Target for the Treatment of Neuropsychiatric Disorders». CNS & Neurological Disorders - Drug Targets (em inglês) (1): 25–43. doi:10.2174/187152706784111551. Consultado em 13 de dezembro de 2023 
  13. De Mei, Claudia; Ramos, Maria; Iitaka, Chisato; Borrelli, Emiliana (1 de fevereiro de 2009). «Getting specialized: presynaptic and postsynaptic dopamine D2 receptors». Current Opinion in Pharmacology. Neurosciences (1): 53–58. ISSN 1471-4892. PMC 2710814Acessível livremente. PMID 19138563. doi:10.1016/j.coph.2008.12.002. Consultado em 13 de dezembro de 2023 
  14. Di Chiara, Gaetano; Bassareo, Valentina (1 de abril de 2007). «Reward system and addiction: what dopamine does and doesn't do». Current Opinion in Pharmacology. Cardiovascular and renal (2). 233 páginas. ISSN 1471-4892. doi:10.1016/j.coph.2007.02.001. Consultado em 13 de dezembro de 2023 
  15. Goldman-Rakic, Patricia S.; Castner, Stacy A.; Svensson, Torgny H.; Siever, Larry J.; Williams, Graham V. (1 de junho de 2004). «Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction». Psychopharmacology (em inglês) (1): 3–16. ISSN 1432-2072. doi:10.1007/s00213-004-1793-y. Consultado em 13 de dezembro de 2023 
  16. Xu, Tai-Xiang; Sotnikova, Tatyana D.; Liang, Chengyu; Zhang, Jingping; Jung, Jae U.; Spealman, Roger D.; Gainetdinov, Raul R.; Yao, Wei-Dong (11 de novembro de 2009). «Hyperdopaminergic Tone Erodes Prefrontal Long-Term Potential via a D2 Receptor-Operated Protein Phosphatase Gate». Journal of Neuroscience (em inglês) (45): 14086–14099. ISSN 0270-6474. PMC 2818669Acessível livremente. PMID 19906957. doi:10.1523/JNEUROSCI.0974-09.2009. Consultado em 13 de dezembro de 2023 
  17. Snyder, Solomon H.; Taylor, Kenneth M.; Coyle, Joseph T.; Meyerhoff, James L. (agosto de 1970). «The Role of Brain Dopamine in Behavioral Regulation and the Actions of Psychotropic Drugs». American Journal of Psychiatry (2): 199–207. ISSN 0002-953X. doi:10.1176/ajp.127.2.199. Consultado em 13 de dezembro de 2023 
  18. Roth, Bryan L.; Sheffler, Douglas J.; Kroeze, Wesley K. (abril de 2004). «Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia». Nature Reviews Drug Discovery (em inglês) (4): 353–359. ISSN 1474-1784. doi:10.1038/nrd1346. Consultado em 13 de dezembro de 2023 
  19. Aperia, Anita C. (março de 2000). «Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism». Annual Review of Physiology (em inglês) (1): 621–647. ISSN 0066-4278. doi:10.1146/annurev.physiol.62.1.621. Consultado em 13 de dezembro de 2023 
  20. Witkovsky, Paul (1 de janeiro de 2004). «Dopamine and retinal function». Documenta Ophthalmologica (em inglês) (1): 17–39. ISSN 1573-2622. doi:10.1023/B:DOOP.0000019487.88486.0a. Consultado em 13 de dezembro de 2023 
  21. Li, Zhi Shan; Schmauss, Claudia; Cuenca, Abigail; Ratcliffe, Elyanne; Gershon, Michael D. (8 de março de 2006). «Physiological Modulation of Intestinal Motility by Enteric Dopaminergic Neurons and the D2 Receptor: Analysis of Dopamine Receptor Expression, Location, Development, and Function in Wild-Type and Knock-Out Mice». Journal of Neuroscience (em inglês) (10): 2798–2807. ISSN 0270-6474. PMC 6675162Acessível livremente. PMID 16525059. doi:10.1523/JNEUROSCI.4720-05.2006. Consultado em 13 de dezembro de 2023 
  22. Beaulieu, Jean‐Martin; Espinoza, Stefano; Gainetdinov, Raul R (janeiro de 2015). «Dopamine receptors – IUPHAR R eview 13». British Journal of Pharmacology (em inglês) (1): 1–23. ISSN 0007-1188. PMC 4280963Acessível livremente. PMID 25671228. doi:10.1111/bph.12906. Consultado em 13 de dezembro de 2023 
  23. Del'Guidice, Thomas; Lemasson, Morgane; Beaulieu, Jean-Martin (2011). «Role of Beta-Arrestin 2 Downstream of Dopamine Receptors in the Basal Ganglia». Frontiers in Neuroanatomy. ISSN 1662-5129. PMC 3167352Acessível livremente. PMID 21922001. doi:10.3389/fnana.2011.00058. Consultado em 13 de dezembro de 2023 
Ícone de esboço Este artigo sobre Biologia molecular é um esboço. Você pode ajudar a Wikipédia expandindo-o.