Sistema octal

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Sistema Octal é um sistema de numeração cuja base é 8, ou seja, utiliza 8 símbolos para a representação de quantidade. No ocidente, estes símbolos são os algarismos arábicos: 0 1 2 3 4 5 6 7

O octal foi muito utilizado em informática como uma alternativa mais compacta ao binário na programação em linguagem de máquina. Hoje, o sistema hexadecimal é mais utilizado como alternativa ao binário.

Este sistema também é um sistema posicional e a posição de seus algarismos determinada em relação à vírgula decimal. Caso isso não ocorra, supõe-se implicitamente colocada à direita do número.

A aritmética desse sistema é semelhante a dos sistemas decimal e binário, o motivo pelo qual não será apresentada.

Exemplo: in
- Qual o número decimal representado pelo número octal 4701?
   Utilizar o TFN.
4 x 8³ + 7 x 8² + 0 x 8¹ + 1 x  8° =
= 2048 + 448 + 0 + 1 = 2497

Conversões de um sistema para outro[editar | editar código-fonte]

Conversão Decimal – Octal[editar | editar código-fonte]

Método de multiplicações sucessivas por 8[editar | editar código-fonte]

É utilizado para converter uma fração decimal para o sistema octal. Multiplica-se a fração decimal por 8, obtendo-se na parte inteira do resultado o primeiro dígito da fração octal resultante. O processo é repetido sucessivamente com a parte fracionária do resultado para obter os dígitos seguintes e termina quando a parte fracionária é nula ou inferior à medida de erro especificada.

Exemplo:

Com decimal 0.140625 em octal.
0.140625 x 8 = 1.125
0.125 x 8 = 1.0
Combinamos os dois métodos anteriores podemos converter para octal números decimais com parte inteira e fracionária.

Método de Divisões sucessivas por 8[editar | editar código-fonte]

É utilizado para converter uma fração decimal para o sistema octal. Dividi-se a fração decimal por 8, obtendo-se na parte inteira do resultado o primeiro dígito da fração octal resultante. O processo é repetido sucessivamente com a parte fracionária do resultado para obter os dígitos seguintes e termina quando a parte fracionária é nula ou inferior à 8 neste caso

Exemplo: 61 /8 = 7 resto 5 => 61(decimal) = 75(octal)

Conversão Octal – Decimal[editar | editar código-fonte]

Existem vários métodos, sendo mais comumente utilizado o proveniente do TFN, em que se faz a conversão de forma direta através da fórmula.

Exemplo:

Converter o número octal 764 para o sistema decimal
764 (8) = 7 x 8² + 6 x 8¹ + 4 x 8°  = 448 + 48 + 4 = 500 (10)

Conversão Octal – Binário[editar | editar código-fonte]

Quando existir necessidade de converter números octal em binários, deve-se separar cada dígito do número octal e substituí-lo pelo seu valor correspondente de binário.

Exemplo:

Converter o número octal 1572  em binário.
Logo, 1 5 7 2    =  001 101 111 010

Conversão Binário – Octal[editar | editar código-fonte]

Para converter um número binário em octal, executa-se o processo inverso ao anterior. Agrupam-se os dígitos binários de 3 em 3 do ponto decimal da direita para a esquerda, substituindo-se cada trio de dígitos binários pelo equivalente dígito octal.

Por exemplo, a conversão do número binário 1010111100 em octal:

001 010 111 100
1 2 7 4

Assim, tem-se 1010111100bin = 1274oct

Conversão Octal – Hexadecimal[editar | editar código-fonte]

Para esta conversão é necessário executar um passo intermediário utilizando o sistema binário. Primeiramente converte-se o número octal em binário e depois converte-se o binário para o sistema hexadecimal, agrupando-se os dígitos de 4 em 4 e fazendo cada grupo corresponder a um dígito hexadecimal.

Por, exemplo, a conversão o número octal 1057 em hexadecimal:

Passagem ao binário:
1 0 5 7
001 000 101 111
Passagem ao hexadecimal:
0010 0010 1111
2 2 F

Assim, tem-se 1057oct = 22Fhex

Conversão Hexadecimal – Octal[editar | editar código-fonte]

Esta conversão, assim com a anterior, exige um passo intermediário em que se utiliza o sistema binário. Converte-se o número hexadecimal em binário e este em octal.

Exemplo:

Converter o número hexadecimal 1F4 em octal.
1 F 4
0001 1111 0100

Conversão para octal

0 7 6 4
000 111 110 100

Tabela de valores[editar | editar código-fonte]

N.º Decimal 10 N.º Binário 2 N.º Hexadecimal 16 N.º Octal 8
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11
10 1010 A 12
11 1011 B 13
12 1100 C 14
13 1101 D 15
14 1110 E 16
15 1111 F 17

Ver também[editar | editar código-fonte]