Superfície

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, comprometendo a sua verificabilidade(desde dezembro de 2017). Por favor, adicione mais referências inserindo-as no texto. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Uma superfície é uma variedade de dimensão 2.

Classificação das superfícies[editar | editar código-fonte]

Um toro é uma esfera com uma ansa.

Qualquer superfície é de um dos tipos seguintes:

Ao número g chama-se o género da superfície. No primeiro caso, a superfície é orientável e no segundo a superfície é não orientável.

A característica de Euler da superfície é dada no primeiro caso por e no segundo por

Superfícies descritas por funções[editar | editar código-fonte]

Se z = f(x,y), e se x e y são variáveis independentes, então a plotagem cartesiana de x contra y contra z irá resultar em uma superfície aberta, que se extende por todo o domínio e imagem da função.[1] A área de um trecho dessa superfície que esteja contido num retângulo dado por x1, x2, y1 e y2 pode ser determinada através do seguinte método: a cada ponto (x, y, f(x,y)) da superfície, pode ser associado um vetor r = <x,y,f(x,y)>. Se a superfície for cortada por infinitos planos de x constante e y constante, infinitamente próximos uns dos outros, então cada pedaço infinitesimal de superfície poderá ser muito bem aproximado por um paralelogramo de lados infinitesimais. Os quatro cantos desse paralelogramo podem ser associados aos vetores r1 = <x, y, f(x,y)>, r2 = <x + dx,y,f(x + dx,y)>, r3 = <x,y + dy,f(x,y + dy)> e r4 = <x + dx,y + dy,f(x + dx,y + dy)>. Ora, é bem sabido que se os lados de um paralelogramo são descritos por vetores, então o produto vetorial deles terá módulo igual à área do paralelogramo. Os vetores associáveis aos lados do paralelogramo são as diferenças entre os vetores associáveis a seus vértices, ou seja, teremos lados L1 = r2 - r1 e L2 = r3 - r1; assim sendo:

Ou, alternativamente,

Mas isso recai na definição de derivada parcial, tal que

Como já foi dito, a área do paralelogramo infinitesimal será dada pelo módulo do produto vetorial de L1 por L2:

E a área de toda a porção da superfície que está contida nesse intervalo nada mais será que o somatório de todas as áreas infinitesimais:

Superfícies descritas parametricamente[editar | editar código-fonte]

Alternativamente, uma superfície pode ser descrita plotando-se não uma, mas três funções de duas variáveis independentes cada umas contra as outras, igualando-se os eixos x, y e z cada um a uma função. Como as letras x, y e z já estão sendo usadas para nomear os eixos coordenados, as variáveis de entrada independentes comuns às três funções costumam ser chamadas de u e v; desta forma, x = f(u,v), y = g(u,v) e z = h(u,v), tal que a superfície plotada é o lugar geométrico dos pontos (x,y,z) = (f,g,h).

Ver também[editar | editar código-fonte]

Referências

  1. SAUTER, Esequia (2016). Cálculo Vetorial. Porto Alegre: UFRGS. 41 páginas 

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.