Teorema de Arzelà-Ascoli

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em matemática, o teorema de Arzelà-Ascoli é um importante resultado, com aplicações na análise real, análise funcional e em áreas afins tais como a teoria das equações diferenciais. Provém dos matemáticos italianos Cesare Arzelà e Giulio Ascoli.

Enunciado da versão real[editar | editar código-fonte]

Seja uma sequência de funções com as seguintes propriedades:

  • Equicontinuidade, ou seja, para cada e cada no domínio, existe um tal que
  • Equilimitação, ou seja, existe uma constante tal que

Então existe uma subseqüência e uma função contínua tal que converge uniformemente para .

De uma forma mais simples, o teorema pode ser enunciado da seguinte forma:

Considere uma sequencia de funções contínuas definidas em um intervalo fechado [a,b] dos reais. Se essa sequência é uniformemente limitada e equicontínua, então existe uma subsequencia que converge uniformemente.

Isso significa, por exemplo, que o teorema funciona para funções deriváveis tais que ela e sua derivada são uniformemente limitadas. Se a derivada segunda também é uniformemente limitada, as derivadas também convergem uniformemente.

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.