Teorema de Linnik

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em teoria analítica dos números o Teorema de Linnik é uma resposta a uma questão sobre Teorema de Dirichlet sobre progressões aritméticas. Ele afirma que existem números positivos c e L tais que, se representarmos p(a,d) o menor primo em progressão aritmética

onde n percorre o conjunto dos inteiros positivos; e a e d são quaisquer inteiros co-primos no intervalo 1 ≤ ad - 1, então:

O teorema tem este nome devido a Yuri Vladimirovitch Linnik, que o provou em 1944.[1][2] Embora a prova de Linnik mostrasse que c e L serem efetivamente computáveis, ele não forneceu valores numéricos para eles.

Propriedades[editar | editar código-fonte]

Sabe-se que para L ≤ 2 para quase todos os inteiros d.[3]

Na hipótese generalizada de Riemann pode-se mostrar que

onde é a função totiente.[4]

Há ainda uma conjectura de que:

[4]


Limites para L[editar | editar código-fonte]

A constante L é chamada de constante de Linnik e a tabela a seguir mostra o progresso que tem sido feito em determinar seu tamanho.

L ≤ Ano de publicação Autor
10000 1957 Pan[5]
5448 1958 Pan
777 1965 Chen[6]
630 1971 Jutila
550 1970 Jutila[7]
168 1977 Chen[8]
80 1977 Jutila[9]
36 1977 Graham[10]
20 1981 Graham[11] (submetido antes do trabalho de Chen de 1979)
17 1979 Chen[12]
16 1986 Wang
13.5 1989 Chen and Liu[13][14]
8 1990 Wang[15]
5.5 1992 Heath-Brown[4]
5.2 2009 Xylouris[16]
5 2011 Xylouris[17]

Além disso, no resultado de Heath-Brown', a constante c é efetivamente computável.

Notas[editar | editar código-fonte]

  1. Linnik, Yu. V. On the least prime in an arithmetic progression I. The basic theorem Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 139-178
  2. Linnik, Yu. V. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 347-368
  3. E. Bombieri, J. B. Friedlander, H. Iwaniec. "Primes in Arithmetic Progressions to Large Moduli. III", Journal of the American Mathematical Society 2(2) (1989), pp. 215–224.
  4. a b c Heath-Brown, D. R. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64(3) (1992), pp. 265-338
  5. Pan Cheng Dong On the least prime in an arithmetical progression. Sci. Record (N.S.) 1 (1957) pp. 311-313
  6. Jingrun Chen On the least prime in an arithmetical progression. Sci. Sinica 14 (1965) pp. 1868-1871
  7. Jutila, M. A new estimate for Linnik's constant. Ann. Acad. Sci. Fenn. Ser. A I No. 471 (1970) 8 pp.
  8. Jingrun Chen On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions. Sci. Sinica 20 (1977), no. 5, pp. 529-562
  9. Jutila, M. On Linnik's constant. Math. Scand. 41 (1977), no. 1, pp. 45-62
  10. Applications of sieve methods Ph.D. Thesis, Univ. Michigan, Ann Arbor, Mich., 1977
  11. Graham, S. W. On Linnik's constant. Acta Arith. 39 (1981), no. 2, pp. 163-179
  12. Jingrun Chen On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II. Sci. Sinica 22 (1979), no. 8, pp. 859-889
  13. Jingrun Chen and Liu Jian Min On the least prime in an arithmetical progression. III. Sci. China Ser. A 32 (1989), no. 6, pp. 654-673
  14. Jingrun Chen and Liu Jian Min On the least prime in an arithmetical progression. IV. Sci. China Ser. A 32 (1989), no. 7, pp. 792-807
  15. Wang On the least prime in an arithmetical progression. Acta Mathematica Sinica, New Series 1991 Vol. 7 No. 3 pp. 279-288
  16. Triantafyllos Xylouris, On Linnik's constant (2009). Arxiv
  17. Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression (2011). Dr. rer. nat. dissertation.