Teoremas espectrais

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Os teoremas espectrais são fundamentais na álgebra linear, por garantirem a existência de uma base ortonormal de autovectores para alguns tipos de operadores. Isto implica que o operador seja diagonalizável, o que facilita bastante os cálculos.[1][2]

Teorema espectral para operadores auto-adjuntos[editar | editar código-fonte]

Seja um operador auto-adjunto e V um espaço vetorial complexo ou real de dimensão n. Então existe uma base ortonormal de V formada por autovectores de T.[3][1]

Teorema espectral para operadores normais[editar | editar código-fonte]

Seja um operador linear e V um espaço vetorial complexo de dimensão n. Então T é normal se, e somente se, existe uma base ortonormal de V formada por autovectores de T. Note que, como todo operador unitário é normal, o teorema pode ser estendido a operadores desse tipo.[3][1]

Teorema espectral para operadores compactos auto-adjuntos em espaços de Hilbert[editar | editar código-fonte]

Seja um espaço de Hilbert separável e um operador compacto auto-adjunto, então existe uma família ortonormal de autovetores com autovalores associados tais que:[3]

Ver também[editar | editar código-fonte]

Referência[editar | editar código-fonte]

  1. a b c 1958-, Beezer, Robert A. (Robert Arnold), (2012). A first course in linear algebra. Gig Harbor, Wash.: Congruent Press. ISBN 9780984417551. OCLC 839681634 
  2. Howard., Anton,. Elementary linear algebra 10th edition ed. Hoboken, NJ: [s.n.] ISBN 9780470432051. OCLC 463637219 
  3. a b c Hoffman,Kunze, Kenneth,Ray (1971). Linear Algebra. Nova Jersey: Prentice-Hall. pp. 343–354