Esponja de Menger: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Bo78 (discussão | contribs)
Bo78 (discussão | contribs)
Linha 4: Linha 4:
Em matemática, a esponja Menger fractal é uma curva. É a curva universal, na medida em que tem uma dimensão topológica, e qualquer outra curva (mais precisamente: qualquer espaço métrico compacto topológicos de dimensão 1), é homeomorphic para alguns subconjunto dele. Às vezes é chamado de Sierpinski-Menger sponge Sierpinski ou a esponja. É uma extensão tridimensional do conjunto Cantor e Sierpinski carpete. Foi descrita pela primeira vez pelo matemático austríaco Karl Menger, em 1926, enquanto explorando o conceito de dimensão topológica.
Em matemática, a esponja Menger fractal é uma curva. É a curva universal, na medida em que tem uma dimensão topológica, e qualquer outra curva (mais precisamente: qualquer espaço métrico compacto topológicos de dimensão 1), é homeomorphic para alguns subconjunto dele. Às vezes é chamado de Sierpinski-Menger sponge Sierpinski ou a esponja. É uma extensão tridimensional do conjunto Cantor e Sierpinski carpete. Foi descrita pela primeira vez pelo matemático austríaco Karl Menger, em 1926, enquanto explorando o conceito de dimensão topológica.


Menger_sponge_(IFS).jpg‎ (600 × 600 pixels, file size: 197 KB, MIME type: image/jpeg)



# Essponga de menger
# Essponga de menger
Linha 29: Linha 29:
Construção de uma esponja Menger pode ser visualizada como segue:
Construção de uma esponja Menger pode ser visualizada como segue:



1. Comece com um cubo. (primeira imagem)
1. Comece com um cubo. (primeira imagem) Menger_sponge_(Level_1-4).jpg‎ (800 × 228 pixels, file size: 89 KB, MIME type: image/jpeg)
2. Divida cada face do cubo em 9 quadrados. Tal sub-dividir o cubo em 27 cubos pequenos, como um Rubik's Cube
2. Divida cada face do cubo em 9 quadrados. Tal sub-dividir o cubo em 27 cubos pequenos, como um Rubik's Cube
3. Remova o cubo no meio de cada face, e remover o cubo no centro, deixando 20 cubos (segunda imagem). Esta é uma esponja Menger Nível 1.
3. Remova o cubo no meio de cada face, e remover o cubo no centro, deixando 20 cubos (segunda imagem). Esta é uma esponja Menger Nível 1.
Linha 66: Linha 67:


Formalmente, uma esponja Menger pode ser definida como segue:
Formalmente, uma esponja Menger pode ser definida como segue:
http://upload.wikimedia.org/math/8/3/7/8376fe62e86ff527200f62a6aa7230e1.png
M := \bigcap_{n\in\mathbb{N}} M_n


onde M0 é a unidade cubo e:
http://upload.wikimedia.org/math/8/3/7/8376fe62e86ff527200f62a6aa7230e1.png





Revisão das 14h57min de 9 de fevereiro de 2009

Para outros usos, ver Esponja (desambiguação). Menger sponge

Em matemática, a esponja Menger fractal é uma curva. É a curva universal, na medida em que tem uma dimensão topológica, e qualquer outra curva (mais precisamente: qualquer espaço métrico compacto topológicos de dimensão 1), é homeomorphic para alguns subconjunto dele. Às vezes é chamado de Sierpinski-Menger sponge Sierpinski ou a esponja. É uma extensão tridimensional do conjunto Cantor e Sierpinski carpete. Foi descrita pela primeira vez pelo matemático austríaco Karl Menger, em 1926, enquanto explorando o conceito de dimensão topológica.

                                                         Menger_sponge_(IFS).jpg‎ (600 × 600 pixels, file size: 197 KB, MIME type: image/jpeg)
  1. Essponga de menger
  2. Costruçao
  3. Propiedades
  4. Defeniçao formal
  5. Referencias


Construção

Construção de uma esponja Menger pode ser visualizada como segue:

   1. Comece com um cubo. (primeira imagem)
   2. Divida cada face do cubo em 9 quadrados. Tal sub-dividir o cubo em 27 cubos pequenos, como um Rubik's Cube
   3. Remova o cubo no meio de cada face, e remover o cubo no centro, deixando 20 cubos (segunda imagem). Esta é uma esponja Menger Nível 1.
   4. Repita os passos 1-3 para cada um dos restantes pequenos cubos.

A segunda repetição lhe dará uma esponja Nível 2 (terceira imagem), o terceiro uma esponja Nível 3 (quarta imagem), e assim por diante. A esponja Menger si é o limite deste processo depois de um número infinito de iterações. Construçao


[1] Construção de uma esponja Menger pode ser visualizada como segue:


   1. Comece com um cubo. (primeira imagem)             Menger_sponge_(Level_1-4).jpg‎ (800 × 228 pixels, file size: 89 KB, MIME type: image/jpeg)
   2. Divida cada face do cubo em 9 quadrados. Tal sub-dividir o cubo em 27 cubos pequenos, como um Rubik's Cube
   3. Remova o cubo no meio de cada face, e remover o cubo no centro, deixando 20 cubos (segunda imagem). Esta é uma esponja Menger Nível 1.
   4. Repita os passos 1-3 para cada um dos restantes pequenos cubos.

A segunda repetição lhe dará uma esponja Nível 2 (terceira imagem), o terceiro uma esponja Nível 3 (quarta imagem), e assim por diante. A esponja Menger si é o limite deste processo depois de um número infinito de iterações. Esponja Menger, três primeiros níveis do processo de construção.

O número de cubos aumenta 20n, com n sendo o número de iterações realizadas no primeiro cubo: ITERS Cubos 0 1 1 20 2 400 3 8.000 4 160.000 5 3.200.000 6 64.000.000

No primeiro nível, não são realizadas iterações, (200 = 1).Ficheiro:180px-Menger sponge (IFS).jpg

Propiedades

Cada face da esponja Menger Sierpinski é um tapete, além disso, a intersecção da esponja Menger com uma diagonal ou médio inicial do cubo M0 Cantor é um conjunto.

A esponja Menger é um conjunto fechado, uma vez que também é delimitada, a Heine-Borel teorema implica que é compacta. Além disso, a esponja Menger é incontável e tem Lebesgue medida 0.

A dimensão do topológica é uma esponja Menger, da mesma forma que qualquer curva. Menger apresentaram, em 1926 a construção, que a esponja é uma curva universal, em que qualquer possível uma curva-dimensional é homeomorphic a um subconjunto da esponja Menger, quando aqui uma curva, qualquer compacta métrica espaço de Lebesgue cobrindo uma dimensão; este inclui árvores e gráficos com um número arbitrário contável de arestas, vértices e os circuitos fechados, conectados em formas arbitrárias.

De um modo semelhante, o carpete Sierpinski é uma curva universal para todas as curvas que podem ser tiradas sobre o plano bidimensional. A esponja Menger construídos em três dimensões estende esta ideia de gráficos que não são planas, e podem ser incorporados em qualquer número de dimensões. Assim, qualquer geometria da malha gravidade quântica pode ser embutido em uma esponja Menger.

Curiosamente, a esponja Menger simultaneamente exibe uma infinita superfície e inclui zero volume.

A esponja tem uma dimensão de Hausdorff (log 20) / (log 3) (aprox. 2,726833).

Definiçao formal

Formalmente, uma esponja Menger pode ser definida como segue:

http://upload.wikimedia.org/math/8/3/7/8376fe62e86ff527200f62a6aa7230e1.png

onde M0 é a unidade cubo e: http://upload.wikimedia.org/math/8/3/7/8376fe62e86ff527200f62a6aa7230e1.png



Referencias

   * Karl Menger, General Spaces and Cartesian Spaces, (1926) Communications to the Amsterdam Academy of Sciences. English translation reprinted in Classics on Fractals, Gerald A.Edgar, editor, Addison-Wesley (1993) ISBN 0-201-58701-7
   * Karl Menger, Dimensionstheorie, (1928) B.G Teubner Publishers, Leipzig.

[edit]