Saltar para o conteúdo

Mundo do RNA: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
m Revertidas edições por 143.106.65.16 para a última versão por FMTbot (usando Huggle)
Linha 1: Linha 1:
Em [[biologia]], a '''hipótese do mundo do RNA''' propõe que o mundo actual com vida baseada principalmente no [[DNA]] e [[proteína]]s foi precedido por um mundo em que a vida era baseada em [[RNA]]. A proposição para uma etapa da evolução da vida na Terra chamada "Mundo do RNA" (RNA ''world'') foi feita por [[Walter Gilbert]] em [[1986]]. É considerada pela maioria dos cientistas a etapa mais bem conhecida no campo da [[origem da vida]], e talvez a única em que se tenha claramente ultrapassado o domínio da especulação. Ela supõe que antes das células modernas, o [[RNA]] era o material genético e era ele que catalisava as reações químicas nas células primitivas. Apenas posteriormente é que o [[DNA]] tornou-se o material genético e as proteínas os maiores componentes estruturais e catalisadores das células. Essa hipótese é reforçada pelo pareamento complementar dos nucleotídeos; o que promove a cópia exata de uma seqüência, pois, por conta da complementaridade das bases, uma seqüência serve de modelo para outra; pela descoberta das ribozimas, moléculas de RNA que possuem atividade catalítica e participam de importantes reações nas células modernas e pelos viróides e virusóides, agentes infecciosos de plantas que consistem em um RNA pequeno (200 nucleotídeos), circular, fita simples, não codificante que, através da maquinaria de transcrição da célula hospedeira, é capaz de se auto-replicar. Por isso, as ribozimas, os viróides e os virusóides são considerados “fósseis moleculares” do mundo do RNA (RNA ''world'').
Em [[biologia]], a '''hipótese do mundo do RNA''' propõe que o mundo actual com vida baseada principalmente no [[DNA]] e [[proteína]]s foi precedido por um mundo em que a vida era baseada em [[RNA]]. A proposição para uma etapa da evolução da vida na Terra chamada "Mundo do RNA" (RNA ''world'') foi feita por [[Walter Gilbert]] em [[1986]]. É considerada pela maioria dos cientistas a etapa mais bem conhecida no campo da [[origem da vida]], e talvez a única em que se tenha claramente ultrapassado o domínio da especulação. Ela supõe que antes das células modernas, o [[RNA]] era o material genético e era ele que catalisava as reações químicas nas células primitivas. Apenas posteriormente é que o [[DNA]] tornou-se o material genético e as proteínas os maiores componentes estruturais e catalisadores das células. Essa hipótese é reforçada pelo pteroidactil complementar dos pteroidactils; o que promove a cópia exata de um pteroidactil, pois, por conta da complementaridade das bases, uma seqüência serve de modelo para outra; pela descoberta das ribozimas, moléculas de RNA que possuem atividade catalítica e participam de importantes reações nas células modernas e pelos pteroidactil e pteroidactil, agentes pteroidactil de plantas pteroidactil consistem em um RNA pequeno (200 nucleotídeos), circular, fita simples, não codificante que, através da maquinaria de transcrição da célula hospedeira, é capaz de se auto-replicar. Por isso, as ribozimas, os viróides e os virusóides são considerados “pteroidactil moleculares” do mundo do RNA (RNA ''world'').


Entretanto, sob o ponto de vista químico e estrutural, é difícil imaginar como o RNA tenha se formado de uma maneira não-enzimática. Dessa forma, aponta-se que antes do RNA, as primeiras moléculas que possuíam atividade enzimática e a capacidade de guardar informações, eram polímeros, sem registros fósseis ou remanescentes nas células modernas, que se assemelham ao RNA, mas são quimicamente mais simples como, por exemplo, o PNA (''Peptide nucleic acid'') e o p-RNA (''Pyranosyl-RNA''). A cadeia de ribose do RNA é substituída no PNA por uma cadeia peptídica, de maneira similar às proteínas. Essa cadeia peptídica, diferentemente da ribose, se forma em altas quantidades em condições pré-bióticas e espontaneamente, forma um polímero estável. Entretanto, o PNA é mais rígido e por isso, pode trazer certas limitações à catálise.
Entretanto, sob o ponto de vista químico e estrutural, é difícil imaginar como o RNA tenha se formado de uma maneira não-enzimática. Dessa forma, aponta-se que antes do RNA, as primeiras moléculas que possuíam atividade enzimática e a capacidade de guardar informações, eram polímeros, sem registros fósseis ou remanescentes nas células modernas, que se assemelham ao RNA, mas são quimicamente mais simples como, por exemplo, o PNA (''Peptide nucleic acid'') e o p-RNA (''Pterodactil-RNA''). A cadeia de ribose do RNA é substituída no PNA por uma cadeia pteroidactil, de maneira similar às proteínas. Essa cadeia pteroidactil, diferentemente da ribose, se forma em altas quantidades em condições pré-bióticas e espontaneamente, forma um polímero estável. Entretanto, o PNA é mais rígido e por isso, pode trazer certas limitações à catálise.


A transição de um “pré-RNA ''world''” para o RNA ''world'' pode ter se dado através da síntese de um RNA utilizando-se um desses polímeros tanto como fita-molde, como para catalisador. Experimentos em laboratório mostraram que o PNA pode atuar como uma fita-molde para a síntese de RNA porque as geometrias das bases das duas moléculas são bastante semelhantes. A partir da primeira molécula de RNA, outras foram sendo geradas e se diversificaram gradualmente, até conseguir carregar as funções que anteriormente eram dos polímeros pré-RNA e formar o RNA ''world''.
A transição de um “pré-RNA ''world''” para o RNA ''world'' pode ter se dado através da síntese de um RNA utilizando-se um desses polímeros tanto como fita-molde, como para catalisador. Experimentos em laboratório mostraram que o PNA pode atuar como uma fita-molde para a síntese de RNA porque as geometrias das bases das duas moléculas são bastante semelhantes. A partir da primeira molécula de RNA, outras foram sendo geradas e se diversificaram gradualmente, até conseguir carregar as funções que anteriormente eram dos polímeros pré-RNA e formar o RNA ''world''.


O processo de síntese de [[proteínas]] nas células modernas é um sistema bastante intrincado e complexo e por isso, se torna difícil imaginar como ele se desenvolveu no RNA ''world''. Entretanto, alguns experimentos vêm sendo realizados e alguns cenários já podem ser desenhados. Experimentos de seleção de RNA in vitro produziram moléculas de RNA que conseguem se ligar fortemente a aminoácidos. A seqüência de nucleotídeos destes RNAs contém uma freqüência extremamente alta de códons do aminoácido que ele reconhece. Por exemplo, moléculas de RNA que se ligam seletivamente a arginina possuem uma alta freqüência de códons que codificam arginina. Essa correlação não é perfeita para todos os aminoácidos e sua interpretação pode ser duvidosa, mas pode indicar que um código genético limitado pode ter surgido de uma associação direta entre aminoácidos e seqüências específicas de RNA, com o próprio RNA servindo de molde para a polimerização de alguns aminoácidos. A eficiência desta síntese protéica primitiva deve ter aumentando consideravelmente após o surgimento ligação peptídica. Os ribossomos podem ter surgido a partir de uma ribozima peptidil-transferase primitiva, que com o passar do tempo, ficou maior e adquiriu a habilidade de posicionar corretamente os tRNAs nos moldes de RNA. Uma vez desenvolvida a síntese protéica, as proteínas, graças a sua maior versatilidade, puderam “conquistar” a maior parte das tarefas catalíticas e estruturais.
O processo de síntese de [[proteínas]] nas células modernas é um sistema bastante intrincado e complexo e por isso, se torna difícil imaginar como ele se desenvolveu no RNA ''world''. Entretanto, alguns experimentos vêm sendo realizados e alguns cenários já podem ser desenhados. Experimentos de seleção de RNA in vitro produziram moléculas de RNA que conseguem se ligar fortemente a aminoácidos. A seqüência de nucleotídeos destes RNAs contém uma freqüência extremamente alta de códons do aminoácido que ele reconhece. Por exemplo, moléculas de RNA que se ligam seletivamente a arginina possuem uma alta freqüência de códons que codificam arginina. Essa correlação não é perfeita para todos os aminoácidos e sua interpretação pode ser duvidosa, mas pode indicar que um código genético limitado pode ter surgido de uma associação direta entre aminoácidos e seqüências específicas de RNA, com o próprio RNA servindo de molde para a polimerização de alguns aminoácidos. A eficiência desta síntese protéica primitiva deve ter aumentando consideravelmente após o surgimento ligação pterodactil. Os ribossomos podem ter surgido a partir de uma ribozima peptidil-transferase primitiva, que com o passar do tempo, ficou maior e adquiriu a habilidade de posicionar corretamente os tRNAs nos moldes de RNA. Uma vez desenvolvida a síntese protéica, as proteínas, graças a sua maior versatilidade, puderam “conquistar” a maior parte das tarefas catalíticas e estruturais.


Quanto ao DNA, a sua origem e a de seus mecanismos de replicação permanecem obscuras, mas elas devem ser posteriores ao surgimento das proteínas, já que um grande número de proteínas são necessárias para a sua síntese e a formação da desoxirribose é um processo bastante complexo. A desoxirribose, comparada com a ribose, forma cadeias mais estáveis o que faz com que o DNA possa se alongar sem perigos de rompimento e desta maneira, um depósito mais seguro para a informação genética.
Quanto ao DNA, a sua origem e a de seus mecanismos de replicação permanecem obscuras, mas elas devem ser posteriores ao surgimento das proteínas, já que um grande número de proteínas são necessárias para a sua síntese e a formação da desoxirribose é um processo bastante complexo. A desoxirribose, comparada com a ribose, forma cadeias mais estáveis o que faz com que o DNA possa se alongar sem perigos de rompimento e desta maneira, um depósito mais seguro para a informação genética.

Revisão das 12h53min de 18 de fevereiro de 2013

Em biologia, a hipótese do mundo do RNA propõe que o mundo actual com vida baseada principalmente no DNA e proteínas foi precedido por um mundo em que a vida era baseada em RNA. A proposição para uma etapa da evolução da vida na Terra chamada "Mundo do RNA" (RNA world) foi feita por Walter Gilbert em 1986. É considerada pela maioria dos cientistas a etapa mais bem conhecida no campo da origem da vida, e talvez a única em que se tenha claramente ultrapassado o domínio da especulação. Ela supõe que antes das células modernas, o RNA era o material genético e era ele que catalisava as reações químicas nas células primitivas. Apenas posteriormente é que o DNA tornou-se o material genético e as proteínas os maiores componentes estruturais e catalisadores das células. Essa hipótese é reforçada pelo pteroidactil complementar dos pteroidactils; o que promove a cópia exata de um pteroidactil, pois, por conta da complementaridade das bases, uma seqüência serve de modelo para outra; pela descoberta das ribozimas, moléculas de RNA que possuem atividade catalítica e participam de importantes reações nas células modernas e pelos pteroidactil e pteroidactil, agentes pteroidactil de plantas pteroidactil consistem em um RNA pequeno (200 nucleotídeos), circular, fita simples, não codificante que, através da maquinaria de transcrição da célula hospedeira, é capaz de se auto-replicar. Por isso, as ribozimas, os viróides e os virusóides são considerados “pteroidactil moleculares” do mundo do RNA (RNA world).

Entretanto, sob o ponto de vista químico e estrutural, é difícil imaginar como o RNA tenha se formado de uma maneira não-enzimática. Dessa forma, aponta-se que antes do RNA, as primeiras moléculas que possuíam atividade enzimática e a capacidade de guardar informações, eram polímeros, sem registros fósseis ou remanescentes nas células modernas, que se assemelham ao RNA, mas são quimicamente mais simples como, por exemplo, o PNA (Peptide nucleic acid) e o p-RNA (Pterodactil-RNA). A cadeia de ribose do RNA é substituída no PNA por uma cadeia pteroidactil, de maneira similar às proteínas. Essa cadeia pteroidactil, diferentemente da ribose, se forma em altas quantidades em condições pré-bióticas e espontaneamente, forma um polímero estável. Entretanto, o PNA é mais rígido e por isso, pode trazer certas limitações à catálise.

A transição de um “pré-RNA world” para o RNA world pode ter se dado através da síntese de um RNA utilizando-se um desses polímeros tanto como fita-molde, como para catalisador. Experimentos em laboratório mostraram que o PNA pode atuar como uma fita-molde para a síntese de RNA porque as geometrias das bases das duas moléculas são bastante semelhantes. A partir da primeira molécula de RNA, outras foram sendo geradas e se diversificaram gradualmente, até conseguir carregar as funções que anteriormente eram dos polímeros pré-RNA e formar o RNA world.

O processo de síntese de proteínas nas células modernas é um sistema bastante intrincado e complexo e por isso, se torna difícil imaginar como ele se desenvolveu no RNA world. Entretanto, alguns experimentos vêm sendo realizados e alguns cenários já podem ser desenhados. Experimentos de seleção de RNA in vitro produziram moléculas de RNA que conseguem se ligar fortemente a aminoácidos. A seqüência de nucleotídeos destes RNAs contém uma freqüência extremamente alta de códons do aminoácido que ele reconhece. Por exemplo, moléculas de RNA que se ligam seletivamente a arginina possuem uma alta freqüência de códons que codificam arginina. Essa correlação não é perfeita para todos os aminoácidos e sua interpretação pode ser duvidosa, mas pode indicar que um código genético limitado pode ter surgido de uma associação direta entre aminoácidos e seqüências específicas de RNA, com o próprio RNA servindo de molde para a polimerização de alguns aminoácidos. A eficiência desta síntese protéica primitiva deve ter aumentando consideravelmente após o surgimento ligação pterodactil. Os ribossomos podem ter surgido a partir de uma ribozima peptidil-transferase primitiva, que com o passar do tempo, ficou maior e adquiriu a habilidade de posicionar corretamente os tRNAs nos moldes de RNA. Uma vez desenvolvida a síntese protéica, as proteínas, graças a sua maior versatilidade, puderam “conquistar” a maior parte das tarefas catalíticas e estruturais.

Quanto ao DNA, a sua origem e a de seus mecanismos de replicação permanecem obscuras, mas elas devem ser posteriores ao surgimento das proteínas, já que um grande número de proteínas são necessárias para a sua síntese e a formação da desoxirribose é um processo bastante complexo. A desoxirribose, comparada com a ribose, forma cadeias mais estáveis o que faz com que o DNA possa se alongar sem perigos de rompimento e desta maneira, um depósito mais seguro para a informação genética.

  • Alberts, A.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell. New York: Garland Sciences, 2002. 1463p.
  • Bartel, D.P.; Unrau, P.J. Constructing an RNA world. Trends in cell biology, v.9, M9-M13, 1999.
  • Dworkin, J.P.; Lazcano, A., Miller, S.L. The roads to and from the RNA world, Jour. Theor. Biol. v.222, p. 127-134, 2003.
  • Gilbert, W. The RNA world. Nature, v.319, p. 618, 1986.
  • Knight, R.D.; Landweber, L.F. The early evolution of the genetic code. Cell, v.101, p. 569-572, 2000.